mirror of
https://codeberg.org/ashley/poke.git
synced 2025-06-14 02:13:04 -04:00
add alac source code - part one
This commit is contained in:
parent
30db8164c0
commit
9e2213a2af
4 changed files with 892 additions and 0 deletions
390
alac/codec/matrix_dec.c
Normal file
390
alac/codec/matrix_dec.c
Normal file
|
@ -0,0 +1,390 @@
|
|||
/*
|
||||
* Copyright (c) 2011 Apple Inc. All rights reserved.
|
||||
*
|
||||
* @APPLE_APACHE_LICENSE_HEADER_START@
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*
|
||||
* @APPLE_APACHE_LICENSE_HEADER_END@
|
||||
*/
|
||||
|
||||
/*
|
||||
File: matrix_dec.c
|
||||
|
||||
Contains: ALAC mixing/matrixing decode routines.
|
||||
|
||||
Copyright: (c) 2004-2011 Apple, Inc.
|
||||
*/
|
||||
|
||||
#include "matrixlib.h"
|
||||
#include "ALACAudioTypes.h"
|
||||
|
||||
// up to 24-bit "offset" macros for the individual bytes of a 20/24-bit word
|
||||
#if TARGET_RT_BIG_ENDIAN
|
||||
#define LBYTE 2
|
||||
#define MBYTE 1
|
||||
#define HBYTE 0
|
||||
#else
|
||||
#define LBYTE 0
|
||||
#define MBYTE 1
|
||||
#define HBYTE 2
|
||||
#endif
|
||||
|
||||
/*
|
||||
There is no plain middle-side option; instead there are various mixing
|
||||
modes including middle-side, each lossless, as embodied in the mix()
|
||||
and unmix() functions. These functions exploit a generalized middle-side
|
||||
transformation:
|
||||
|
||||
u := [(rL + (m-r)R)/m];
|
||||
v := L - R;
|
||||
|
||||
where [ ] denotes integer floor. The (lossless) inverse is
|
||||
|
||||
L = u + v - [rV/m];
|
||||
R = L - v;
|
||||
*/
|
||||
|
||||
// 16-bit routines
|
||||
|
||||
void unmix16( int32_t * u, int32_t * v, int16_t * out, uint32_t stride, int32_t numSamples, int32_t mixbits, int32_t mixres )
|
||||
{
|
||||
int16_t * op = out;
|
||||
int32_t j;
|
||||
|
||||
if ( mixres != 0 )
|
||||
{
|
||||
/* matrixed stereo */
|
||||
for ( j = 0; j < numSamples; j++ )
|
||||
{
|
||||
int32_t l, r;
|
||||
|
||||
l = u[j] + v[j] - ((mixres * v[j]) >> mixbits);
|
||||
r = l - v[j];
|
||||
|
||||
op[0] = (int16_t) l;
|
||||
op[1] = (int16_t) r;
|
||||
op += stride;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Conventional separated stereo. */
|
||||
for ( j = 0; j < numSamples; j++ )
|
||||
{
|
||||
op[0] = (int16_t) u[j];
|
||||
op[1] = (int16_t) v[j];
|
||||
op += stride;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 20-bit routines
|
||||
// - the 20 bits of data are left-justified in 3 bytes of storage but right-aligned for input/output predictor buffers
|
||||
|
||||
void unmix20( int32_t * u, int32_t * v, uint8_t * out, uint32_t stride, int32_t numSamples, int32_t mixbits, int32_t mixres )
|
||||
{
|
||||
uint8_t * op = out;
|
||||
int32_t j;
|
||||
|
||||
if ( mixres != 0 )
|
||||
{
|
||||
/* matrixed stereo */
|
||||
for ( j = 0; j < numSamples; j++ )
|
||||
{
|
||||
int32_t l, r;
|
||||
|
||||
l = u[j] + v[j] - ((mixres * v[j]) >> mixbits);
|
||||
r = l - v[j];
|
||||
|
||||
l <<= 4;
|
||||
r <<= 4;
|
||||
|
||||
op[HBYTE] = (uint8_t)((l >> 16) & 0xffu);
|
||||
op[MBYTE] = (uint8_t)((l >> 8) & 0xffu);
|
||||
op[LBYTE] = (uint8_t)((l >> 0) & 0xffu);
|
||||
op += 3;
|
||||
|
||||
op[HBYTE] = (uint8_t)((r >> 16) & 0xffu);
|
||||
op[MBYTE] = (uint8_t)((r >> 8) & 0xffu);
|
||||
op[LBYTE] = (uint8_t)((r >> 0) & 0xffu);
|
||||
|
||||
op += (stride - 1) * 3;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Conventional separated stereo. */
|
||||
for ( j = 0; j < numSamples; j++ )
|
||||
{
|
||||
int32_t val;
|
||||
|
||||
val = u[j] << 4;
|
||||
op[HBYTE] = (uint8_t)((val >> 16) & 0xffu);
|
||||
op[MBYTE] = (uint8_t)((val >> 8) & 0xffu);
|
||||
op[LBYTE] = (uint8_t)((val >> 0) & 0xffu);
|
||||
op += 3;
|
||||
|
||||
val = v[j] << 4;
|
||||
op[HBYTE] = (uint8_t)((val >> 16) & 0xffu);
|
||||
op[MBYTE] = (uint8_t)((val >> 8) & 0xffu);
|
||||
op[LBYTE] = (uint8_t)((val >> 0) & 0xffu);
|
||||
|
||||
op += (stride - 1) * 3;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 24-bit routines
|
||||
// - the 24 bits of data are right-justified in the input/output predictor buffers
|
||||
|
||||
void unmix24( int32_t * u, int32_t * v, uint8_t * out, uint32_t stride, int32_t numSamples,
|
||||
int32_t mixbits, int32_t mixres, uint16_t * shiftUV, int32_t bytesShifted )
|
||||
{
|
||||
uint8_t * op = out;
|
||||
int32_t shift = bytesShifted * 8;
|
||||
int32_t l, r;
|
||||
int32_t j, k;
|
||||
|
||||
if ( mixres != 0 )
|
||||
{
|
||||
/* matrixed stereo */
|
||||
if ( bytesShifted != 0 )
|
||||
{
|
||||
for ( j = 0, k = 0; j < numSamples; j++, k += 2 )
|
||||
{
|
||||
l = u[j] + v[j] - ((mixres * v[j]) >> mixbits);
|
||||
r = l - v[j];
|
||||
|
||||
l = (l << shift) | (uint32_t) shiftUV[k + 0];
|
||||
r = (r << shift) | (uint32_t) shiftUV[k + 1];
|
||||
|
||||
op[HBYTE] = (uint8_t)((l >> 16) & 0xffu);
|
||||
op[MBYTE] = (uint8_t)((l >> 8) & 0xffu);
|
||||
op[LBYTE] = (uint8_t)((l >> 0) & 0xffu);
|
||||
op += 3;
|
||||
|
||||
op[HBYTE] = (uint8_t)((r >> 16) & 0xffu);
|
||||
op[MBYTE] = (uint8_t)((r >> 8) & 0xffu);
|
||||
op[LBYTE] = (uint8_t)((r >> 0) & 0xffu);
|
||||
|
||||
op += (stride - 1) * 3;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for ( j = 0; j < numSamples; j++ )
|
||||
{
|
||||
l = u[j] + v[j] - ((mixres * v[j]) >> mixbits);
|
||||
r = l - v[j];
|
||||
|
||||
op[HBYTE] = (uint8_t)((l >> 16) & 0xffu);
|
||||
op[MBYTE] = (uint8_t)((l >> 8) & 0xffu);
|
||||
op[LBYTE] = (uint8_t)((l >> 0) & 0xffu);
|
||||
op += 3;
|
||||
|
||||
op[HBYTE] = (uint8_t)((r >> 16) & 0xffu);
|
||||
op[MBYTE] = (uint8_t)((r >> 8) & 0xffu);
|
||||
op[LBYTE] = (uint8_t)((r >> 0) & 0xffu);
|
||||
|
||||
op += (stride - 1) * 3;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Conventional separated stereo. */
|
||||
if ( bytesShifted != 0 )
|
||||
{
|
||||
for ( j = 0, k = 0; j < numSamples; j++, k += 2 )
|
||||
{
|
||||
l = u[j];
|
||||
r = v[j];
|
||||
|
||||
l = (l << shift) | (uint32_t) shiftUV[k + 0];
|
||||
r = (r << shift) | (uint32_t) shiftUV[k + 1];
|
||||
|
||||
op[HBYTE] = (uint8_t)((l >> 16) & 0xffu);
|
||||
op[MBYTE] = (uint8_t)((l >> 8) & 0xffu);
|
||||
op[LBYTE] = (uint8_t)((l >> 0) & 0xffu);
|
||||
op += 3;
|
||||
|
||||
op[HBYTE] = (uint8_t)((r >> 16) & 0xffu);
|
||||
op[MBYTE] = (uint8_t)((r >> 8) & 0xffu);
|
||||
op[LBYTE] = (uint8_t)((r >> 0) & 0xffu);
|
||||
|
||||
op += (stride - 1) * 3;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for ( j = 0; j < numSamples; j++ )
|
||||
{
|
||||
int32_t val;
|
||||
|
||||
val = u[j];
|
||||
op[HBYTE] = (uint8_t)((val >> 16) & 0xffu);
|
||||
op[MBYTE] = (uint8_t)((val >> 8) & 0xffu);
|
||||
op[LBYTE] = (uint8_t)((val >> 0) & 0xffu);
|
||||
op += 3;
|
||||
|
||||
val = v[j];
|
||||
op[HBYTE] = (uint8_t)((val >> 16) & 0xffu);
|
||||
op[MBYTE] = (uint8_t)((val >> 8) & 0xffu);
|
||||
op[LBYTE] = (uint8_t)((val >> 0) & 0xffu);
|
||||
|
||||
op += (stride - 1) * 3;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 32-bit routines
|
||||
// - note that these really expect the internal data width to be < 32 but the arrays are 32-bit
|
||||
// - otherwise, the calculations might overflow into the 33rd bit and be lost
|
||||
// - therefore, these routines deal with the specified "unused lower" bytes in the "shift" buffers
|
||||
|
||||
void unmix32( int32_t * u, int32_t * v, int32_t * out, uint32_t stride, int32_t numSamples,
|
||||
int32_t mixbits, int32_t mixres, uint16_t * shiftUV, int32_t bytesShifted )
|
||||
{
|
||||
int32_t * op = out;
|
||||
int32_t shift = bytesShifted * 8;
|
||||
int32_t l, r;
|
||||
int32_t j, k;
|
||||
|
||||
if ( mixres != 0 )
|
||||
{
|
||||
//Assert( bytesShifted != 0 );
|
||||
|
||||
/* matrixed stereo with shift */
|
||||
for ( j = 0, k = 0; j < numSamples; j++, k += 2 )
|
||||
{
|
||||
int32_t lt, rt;
|
||||
|
||||
lt = u[j];
|
||||
rt = v[j];
|
||||
|
||||
l = lt + rt - ((mixres * rt) >> mixbits);
|
||||
r = l - rt;
|
||||
|
||||
op[0] = (l << shift) | (uint32_t) shiftUV[k + 0];
|
||||
op[1] = (r << shift) | (uint32_t) shiftUV[k + 1];
|
||||
op += stride;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if ( bytesShifted == 0 )
|
||||
{
|
||||
/* interleaving w/o shift */
|
||||
for ( j = 0; j < numSamples; j++ )
|
||||
{
|
||||
op[0] = u[j];
|
||||
op[1] = v[j];
|
||||
op += stride;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* interleaving with shift */
|
||||
for ( j = 0, k = 0; j < numSamples; j++, k += 2 )
|
||||
{
|
||||
op[0] = (u[j] << shift) | (uint32_t) shiftUV[k + 0];
|
||||
op[1] = (v[j] << shift) | (uint32_t) shiftUV[k + 1];
|
||||
op += stride;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 20/24-bit <-> 32-bit helper routines (not really matrixing but convenient to put here)
|
||||
|
||||
void copyPredictorTo24( int32_t * in, uint8_t * out, uint32_t stride, int32_t numSamples )
|
||||
{
|
||||
uint8_t * op = out;
|
||||
int32_t j;
|
||||
|
||||
for ( j = 0; j < numSamples; j++ )
|
||||
{
|
||||
int32_t val = in[j];
|
||||
|
||||
op[HBYTE] = (uint8_t)((val >> 16) & 0xffu);
|
||||
op[MBYTE] = (uint8_t)((val >> 8) & 0xffu);
|
||||
op[LBYTE] = (uint8_t)((val >> 0) & 0xffu);
|
||||
op += (stride * 3);
|
||||
}
|
||||
}
|
||||
|
||||
void copyPredictorTo24Shift( int32_t * in, uint16_t * shift, uint8_t * out, uint32_t stride, int32_t numSamples, int32_t bytesShifted )
|
||||
{
|
||||
uint8_t * op = out;
|
||||
int32_t shiftVal = bytesShifted * 8;
|
||||
int32_t j;
|
||||
|
||||
//Assert( bytesShifted != 0 );
|
||||
|
||||
for ( j = 0; j < numSamples; j++ )
|
||||
{
|
||||
int32_t val = in[j];
|
||||
|
||||
val = (val << shiftVal) | (uint32_t) shift[j];
|
||||
|
||||
op[HBYTE] = (uint8_t)((val >> 16) & 0xffu);
|
||||
op[MBYTE] = (uint8_t)((val >> 8) & 0xffu);
|
||||
op[LBYTE] = (uint8_t)((val >> 0) & 0xffu);
|
||||
op += (stride * 3);
|
||||
}
|
||||
}
|
||||
|
||||
void copyPredictorTo20( int32_t * in, uint8_t * out, uint32_t stride, int32_t numSamples )
|
||||
{
|
||||
uint8_t * op = out;
|
||||
int32_t j;
|
||||
|
||||
// 32-bit predictor values are right-aligned but 20-bit output values should be left-aligned
|
||||
// in the 24-bit output buffer
|
||||
for ( j = 0; j < numSamples; j++ )
|
||||
{
|
||||
int32_t val = in[j];
|
||||
|
||||
op[HBYTE] = (uint8_t)((val >> 12) & 0xffu);
|
||||
op[MBYTE] = (uint8_t)((val >> 4) & 0xffu);
|
||||
op[LBYTE] = (uint8_t)((val << 4) & 0xffu);
|
||||
op += (stride * 3);
|
||||
}
|
||||
}
|
||||
|
||||
void copyPredictorTo32( int32_t * in, int32_t * out, uint32_t stride, int32_t numSamples )
|
||||
{
|
||||
int32_t i, j;
|
||||
|
||||
// this is only a subroutine to abstract the "iPod can only output 16-bit data" problem
|
||||
for ( i = 0, j = 0; i < numSamples; i++, j += stride )
|
||||
out[j] = in[i];
|
||||
}
|
||||
|
||||
void copyPredictorTo32Shift( int32_t * in, uint16_t * shift, int32_t * out, uint32_t stride, int32_t numSamples, int32_t bytesShifted )
|
||||
{
|
||||
int32_t * op = out;
|
||||
uint32_t shiftVal = bytesShifted * 8;
|
||||
int32_t j;
|
||||
|
||||
//Assert( bytesShifted != 0 );
|
||||
|
||||
// this is only a subroutine to abstract the "iPod can only output 16-bit data" problem
|
||||
for ( j = 0; j < numSamples; j++ )
|
||||
{
|
||||
op[0] = (in[j] << shiftVal) | (uint32_t) shift[j];
|
||||
op += stride;
|
||||
}
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue