Refactor SVC handler (#540)

* Refactor SVC handler

* Get rid of KernelErr

* Split kernel code files into multiple folders
This commit is contained in:
gdkchan 2018-12-18 03:33:36 -02:00 committed by GitHub
parent 2534a7f10c
commit 0039bb6394
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
105 changed files with 1894 additions and 1982 deletions

View file

@ -0,0 +1,9 @@
using System;
namespace Ryujinx.HLE.HOS.Kernel.SupervisorCall
{
public class InvalidSvcException : Exception
{
public InvalidSvcException(string message) : base(message) { }
}
}

View file

@ -0,0 +1,61 @@
using ChocolArm64.Events;
using ChocolArm64.Memory;
using ChocolArm64.State;
using Ryujinx.HLE.HOS.Ipc;
using Ryujinx.HLE.HOS.Kernel.Ipc;
using Ryujinx.HLE.HOS.Kernel.Process;
using Ryujinx.HLE.HOS.Kernel.Threading;
using System;
namespace Ryujinx.HLE.HOS.Kernel.SupervisorCall
{
partial class SvcHandler
{
private Switch _device;
private KProcess _process;
private Horizon _system;
private MemoryManager _memory;
private struct HleIpcMessage
{
public KThread Thread { get; private set; }
public KSession Session { get; private set; }
public IpcMessage Message { get; private set; }
public long MessagePtr { get; private set; }
public HleIpcMessage(
KThread thread,
KSession session,
IpcMessage message,
long messagePtr)
{
Thread = thread;
Session = session;
Message = message;
MessagePtr = messagePtr;
}
}
public SvcHandler(Switch device, KProcess process)
{
_device = device;
_process = process;
_system = device.System;
_memory = process.CpuMemory;
}
public void SvcCall(object sender, InstExceptionEventArgs e)
{
Action<SvcHandler, CpuThreadState> svcFunc = SvcTable.GetSvcFunc(e.Id);
if (svcFunc == null)
{
throw new NotImplementedException($"SVC 0x{e.Id:X4} is not implemented.");
}
CpuThreadState threadState = (CpuThreadState)sender;
svcFunc(this, threadState);
}
}
}

View file

@ -0,0 +1,394 @@
using Ryujinx.HLE.HOS.Kernel.Common;
using Ryujinx.HLE.HOS.Kernel.Memory;
using Ryujinx.HLE.HOS.Kernel.Process;
namespace Ryujinx.HLE.HOS.Kernel.SupervisorCall
{
partial class SvcHandler
{
public KernelResult SetHeapSize64(ulong size, out ulong position)
{
return SetHeapSize(size, out position);
}
private KernelResult SetHeapSize(ulong size, out ulong position)
{
if ((size & 0xfffffffe001fffff) != 0)
{
position = 0;
return KernelResult.InvalidSize;
}
return _process.MemoryManager.SetHeapSize(size, out position);
}
public KernelResult SetMemoryAttribute64(
ulong position,
ulong size,
MemoryAttribute attributeMask,
MemoryAttribute attributeValue)
{
return SetMemoryAttribute(position, size, attributeMask, attributeValue);
}
private KernelResult SetMemoryAttribute(
ulong position,
ulong size,
MemoryAttribute attributeMask,
MemoryAttribute attributeValue)
{
if (!PageAligned(position))
{
return KernelResult.InvalidAddress;
}
if (!PageAligned(size) || size == 0)
{
return KernelResult.InvalidSize;
}
MemoryAttribute attributes = attributeMask | attributeValue;
if (attributes != attributeMask ||
(attributes | MemoryAttribute.Uncached) != MemoryAttribute.Uncached)
{
return KernelResult.InvalidCombination;
}
KernelResult result = _process.MemoryManager.SetMemoryAttribute(
position,
size,
attributeMask,
attributeValue);
if (result == KernelResult.Success)
{
_memory.StopObservingRegion((long)position, (long)size);
}
return result;
}
public KernelResult MapMemory64(ulong dst, ulong src, ulong size)
{
return MapMemory(dst, src, size);
}
private KernelResult MapMemory(ulong dst, ulong src, ulong size)
{
if (!PageAligned(src | dst))
{
return KernelResult.InvalidAddress;
}
if (!PageAligned(size) || size == 0)
{
return KernelResult.InvalidSize;
}
if (src + size <= src || dst + size <= dst)
{
return KernelResult.InvalidMemState;
}
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
if (!currentProcess.MemoryManager.InsideAddrSpace(src, size))
{
return KernelResult.InvalidMemState;
}
if (currentProcess.MemoryManager.OutsideStackRegion(dst, size) ||
currentProcess.MemoryManager.InsideHeapRegion (dst, size) ||
currentProcess.MemoryManager.InsideAliasRegion (dst, size))
{
return KernelResult.InvalidMemRange;
}
return _process.MemoryManager.Map(dst, src, size);
}
public KernelResult UnmapMemory64(ulong dst, ulong src, ulong size)
{
return UnmapMemory(dst, src, size);
}
private KernelResult UnmapMemory(ulong dst, ulong src, ulong size)
{
if (!PageAligned(src | dst))
{
return KernelResult.InvalidAddress;
}
if (!PageAligned(size) || size == 0)
{
return KernelResult.InvalidSize;
}
if (src + size <= src || dst + size <= dst)
{
return KernelResult.InvalidMemState;
}
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
if (!currentProcess.MemoryManager.InsideAddrSpace(src, size))
{
return KernelResult.InvalidMemState;
}
if (currentProcess.MemoryManager.OutsideStackRegion(dst, size) ||
currentProcess.MemoryManager.InsideHeapRegion (dst, size) ||
currentProcess.MemoryManager.InsideAliasRegion (dst, size))
{
return KernelResult.InvalidMemRange;
}
return _process.MemoryManager.Unmap(dst, src, size);
}
public KernelResult QueryMemory64(ulong infoPtr, ulong x1, ulong position)
{
return QueryMemory(infoPtr, position);
}
private KernelResult QueryMemory(ulong infoPtr, ulong position)
{
KMemoryInfo blkInfo = _process.MemoryManager.QueryMemory(position);
_memory.WriteUInt64((long)infoPtr + 0x00, blkInfo.Address);
_memory.WriteUInt64((long)infoPtr + 0x08, blkInfo.Size);
_memory.WriteInt32 ((long)infoPtr + 0x10, (int)blkInfo.State & 0xff);
_memory.WriteInt32 ((long)infoPtr + 0x14, (int)blkInfo.Attribute);
_memory.WriteInt32 ((long)infoPtr + 0x18, (int)blkInfo.Permission);
_memory.WriteInt32 ((long)infoPtr + 0x1c, blkInfo.IpcRefCount);
_memory.WriteInt32 ((long)infoPtr + 0x20, blkInfo.DeviceRefCount);
_memory.WriteInt32 ((long)infoPtr + 0x24, 0);
return KernelResult.Success;
}
public KernelResult MapSharedMemory64(int handle, ulong address, ulong size, MemoryPermission permission)
{
return MapSharedMemory(handle, address, size, permission);
}
private KernelResult MapSharedMemory(int handle, ulong address, ulong size, MemoryPermission permission)
{
if (!PageAligned(address))
{
return KernelResult.InvalidAddress;
}
if (!PageAligned(size) || size == 0)
{
return KernelResult.InvalidSize;
}
if (address + size <= address)
{
return KernelResult.InvalidMemState;
}
if ((permission | MemoryPermission.Write) != MemoryPermission.ReadAndWrite)
{
return KernelResult.InvalidPermission;
}
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
KSharedMemory sharedMemory = currentProcess.HandleTable.GetObject<KSharedMemory>(handle);
if (sharedMemory == null)
{
return KernelResult.InvalidHandle;
}
if (currentProcess.MemoryManager.IsInvalidRegion (address, size) ||
currentProcess.MemoryManager.InsideHeapRegion (address, size) ||
currentProcess.MemoryManager.InsideAliasRegion(address, size))
{
return KernelResult.InvalidMemRange;
}
return sharedMemory.MapIntoProcess(
currentProcess.MemoryManager,
address,
size,
currentProcess,
permission);
}
public KernelResult UnmapSharedMemory64(int handle, ulong address, ulong size)
{
return UnmapSharedMemory(handle, address, size);
}
private KernelResult UnmapSharedMemory(int handle, ulong address, ulong size)
{
if (!PageAligned(address))
{
return KernelResult.InvalidAddress;
}
if (!PageAligned(size) || size == 0)
{
return KernelResult.InvalidSize;
}
if (address + size <= address)
{
return KernelResult.InvalidMemState;
}
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
KSharedMemory sharedMemory = currentProcess.HandleTable.GetObject<KSharedMemory>(handle);
if (sharedMemory == null)
{
return KernelResult.InvalidHandle;
}
if (currentProcess.MemoryManager.IsInvalidRegion (address, size) ||
currentProcess.MemoryManager.InsideHeapRegion (address, size) ||
currentProcess.MemoryManager.InsideAliasRegion(address, size))
{
return KernelResult.InvalidMemRange;
}
return sharedMemory.UnmapFromProcess(
currentProcess.MemoryManager,
address,
size,
currentProcess);
}
public KernelResult CreateTransferMemory64(
ulong address,
ulong size,
MemoryPermission permission,
out int handle)
{
return CreateTransferMemory(address, size, permission, out handle);
}
private KernelResult CreateTransferMemory(ulong address, ulong size, MemoryPermission permission, out int handle)
{
handle = 0;
if (!PageAligned(address))
{
return KernelResult.InvalidAddress;
}
if (!PageAligned(size) || size == 0)
{
return KernelResult.InvalidSize;
}
if (address + size <= address)
{
return KernelResult.InvalidMemState;
}
if (permission > MemoryPermission.ReadAndWrite || permission == MemoryPermission.Write)
{
return KernelResult.InvalidPermission;
}
KernelResult result = _process.MemoryManager.ReserveTransferMemory(address, size, permission);
if (result != KernelResult.Success)
{
return result;
}
KTransferMemory transferMemory = new KTransferMemory(address, size);
return _process.HandleTable.GenerateHandle(transferMemory, out handle);
}
public KernelResult MapPhysicalMemory64(ulong address, ulong size)
{
return MapPhysicalMemory(address, size);
}
private KernelResult MapPhysicalMemory(ulong address, ulong size)
{
if (!PageAligned(address))
{
return KernelResult.InvalidAddress;
}
if (!PageAligned(size) || size == 0)
{
return KernelResult.InvalidSize;
}
if (address + size <= address)
{
return KernelResult.InvalidMemRange;
}
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
if ((currentProcess.PersonalMmHeapPagesCount & 0xfffffffffffff) == 0)
{
return KernelResult.InvalidState;
}
if (!currentProcess.MemoryManager.InsideAddrSpace (address, size) ||
currentProcess.MemoryManager.OutsideAliasRegion(address, size))
{
return KernelResult.InvalidMemRange;
}
return _process.MemoryManager.MapPhysicalMemory(address, size);
}
public KernelResult UnmapPhysicalMemory64(ulong address, ulong size)
{
return MapPhysicalMemory(address, size);
}
private KernelResult UnmapPhysicalMemory(ulong address, ulong size)
{
if (!PageAligned(address))
{
return KernelResult.InvalidAddress;
}
if (!PageAligned(size) || size == 0)
{
return KernelResult.InvalidSize;
}
if (address + size <= address)
{
return KernelResult.InvalidMemRange;
}
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
if ((currentProcess.PersonalMmHeapPagesCount & 0xfffffffffffff) == 0)
{
return KernelResult.InvalidState;
}
if (!currentProcess.MemoryManager.InsideAddrSpace (address, size) ||
currentProcess.MemoryManager.OutsideAliasRegion(address, size))
{
return KernelResult.InvalidMemRange;
}
return _process.MemoryManager.UnmapPhysicalMemory(address, size);
}
private static bool PageAligned(ulong position)
{
return (position & (KMemoryManager.PageSize - 1)) == 0;
}
}
}

View file

@ -0,0 +1,762 @@
using ChocolArm64.Memory;
using Ryujinx.Common;
using Ryujinx.Common.Logging;
using Ryujinx.HLE.Exceptions;
using Ryujinx.HLE.HOS.Ipc;
using Ryujinx.HLE.HOS.Kernel.Common;
using Ryujinx.HLE.HOS.Kernel.Ipc;
using Ryujinx.HLE.HOS.Kernel.Memory;
using Ryujinx.HLE.HOS.Kernel.Process;
using Ryujinx.HLE.HOS.Kernel.Threading;
using Ryujinx.HLE.HOS.Services;
using System.Threading;
namespace Ryujinx.HLE.HOS.Kernel.SupervisorCall
{
partial class SvcHandler
{
public void ExitProcess64()
{
ExitProcess();
}
private void ExitProcess()
{
_system.Scheduler.GetCurrentProcess().Terminate();
}
public KernelResult SignalEvent64(int handle)
{
return SignalEvent(handle);
}
private KernelResult SignalEvent(int handle)
{
KWritableEvent writableEvent = _process.HandleTable.GetObject<KWritableEvent>(handle);
KernelResult result;
if (writableEvent != null)
{
writableEvent.Signal();
result = KernelResult.Success;
}
else
{
result = KernelResult.InvalidHandle;
}
return result;
}
public KernelResult ClearEvent64(int handle)
{
return ClearEvent(handle);
}
private KernelResult ClearEvent(int handle)
{
KernelResult result;
KWritableEvent writableEvent = _process.HandleTable.GetObject<KWritableEvent>(handle);
if (writableEvent == null)
{
KReadableEvent readableEvent = _process.HandleTable.GetObject<KReadableEvent>(handle);
result = readableEvent?.Clear() ?? KernelResult.InvalidHandle;
}
else
{
result = writableEvent.Clear();
}
return result;
}
public KernelResult CloseHandle64(int handle)
{
return CloseHandle(handle);
}
private KernelResult CloseHandle(int handle)
{
object obj = _process.HandleTable.GetObject<object>(handle);
_process.HandleTable.CloseHandle(handle);
if (obj == null)
{
return KernelResult.InvalidHandle;
}
if (obj is KSession session)
{
session.Dispose();
}
else if (obj is KTransferMemory transferMemory)
{
_process.MemoryManager.ResetTransferMemory(
transferMemory.Address,
transferMemory.Size);
}
return KernelResult.Success;
}
public KernelResult ResetSignal64(int handle)
{
return ResetSignal(handle);
}
private KernelResult ResetSignal(int handle)
{
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
KReadableEvent readableEvent = currentProcess.HandleTable.GetObject<KReadableEvent>(handle);
KernelResult result;
if (readableEvent != null)
{
result = readableEvent.ClearIfSignaled();
}
else
{
KProcess process = currentProcess.HandleTable.GetKProcess(handle);
if (process != null)
{
result = process.ClearIfNotExited();
}
else
{
result = KernelResult.InvalidHandle;
}
}
return result;
}
public ulong GetSystemTick64()
{
return _system.Scheduler.GetCurrentThread().Context.ThreadState.CntpctEl0;
}
public KernelResult ConnectToNamedPort64(ulong namePtr, out int handle)
{
return ConnectToNamedPort(namePtr, out handle);
}
private KernelResult ConnectToNamedPort(ulong namePtr, out int handle)
{
string name = MemoryHelper.ReadAsciiString(_memory, (long)namePtr, 8);
//TODO: Validate that app has perms to access the service, and that the service
//actually exists, return error codes otherwise.
KSession session = new KSession(ServiceFactory.MakeService(_system, name), name);
return _process.HandleTable.GenerateHandle(session, out handle);
}
public KernelResult SendSyncRequest64(int handle)
{
return SendSyncRequest((ulong)_system.Scheduler.GetCurrentThread().Context.ThreadState.Tpidr, 0x100, handle);
}
public KernelResult SendSyncRequestWithUserBuffer64(ulong messagePtr, ulong size, int handle)
{
return SendSyncRequest(messagePtr, size, handle);
}
private KernelResult SendSyncRequest(ulong messagePtr, ulong size, int handle)
{
byte[] messageData = _memory.ReadBytes((long)messagePtr, (long)size);
KSession session = _process.HandleTable.GetObject<KSession>(handle);
if (session != null)
{
_system.CriticalSection.Enter();
KThread currentThread = _system.Scheduler.GetCurrentThread();
currentThread.SignaledObj = null;
currentThread.ObjSyncResult = KernelResult.Success;
currentThread.Reschedule(ThreadSchedState.Paused);
IpcMessage message = new IpcMessage(messageData, (long)messagePtr);
ThreadPool.QueueUserWorkItem(ProcessIpcRequest, new HleIpcMessage(
currentThread,
session,
message,
(long)messagePtr));
_system.ThreadCounter.AddCount();
_system.CriticalSection.Leave();
return currentThread.ObjSyncResult;
}
else
{
Logger.PrintWarning(LogClass.KernelSvc, $"Invalid session handle 0x{handle:x8}!");
return KernelResult.InvalidHandle;
}
}
private void ProcessIpcRequest(object state)
{
HleIpcMessage ipcMessage = (HleIpcMessage)state;
ipcMessage.Thread.ObjSyncResult = IpcHandler.IpcCall(
_device,
_process,
_memory,
ipcMessage.Session,
ipcMessage.Message,
ipcMessage.MessagePtr);
_system.ThreadCounter.Signal();
ipcMessage.Thread.Reschedule(ThreadSchedState.Running);
}
public KernelResult GetProcessId64(int handle, out long pid)
{
return GetProcessId(handle, out pid);
}
private KernelResult GetProcessId(int handle, out long pid)
{
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
KProcess process = currentProcess.HandleTable.GetKProcess(handle);
if (process == null)
{
KThread thread = currentProcess.HandleTable.GetKThread(handle);
if (thread != null)
{
process = thread.Owner;
}
//TODO: KDebugEvent.
}
pid = process?.Pid ?? 0;
return process != null
? KernelResult.Success
: KernelResult.InvalidHandle;
}
public void Break64(ulong reason, ulong x1, ulong info)
{
Break(reason);
}
private void Break(ulong reason)
{
KThread currentThread = _system.Scheduler.GetCurrentThread();
if ((reason & (1UL << 31)) == 0)
{
currentThread.PrintGuestStackTrace();
throw new GuestBrokeExecutionException();
}
else
{
Logger.PrintInfo(LogClass.KernelSvc, "Debugger triggered.");
currentThread.PrintGuestStackTrace();
}
}
public void OutputDebugString64(ulong strPtr, ulong size)
{
OutputDebugString(strPtr, size);
}
private void OutputDebugString(ulong strPtr, ulong size)
{
string str = MemoryHelper.ReadAsciiString(_memory, (long)strPtr, (long)size);
Logger.PrintWarning(LogClass.KernelSvc, str);
}
public KernelResult GetInfo64(uint id, int handle, long subId, out long value)
{
return GetInfo(id, handle, subId, out value);
}
private KernelResult GetInfo(uint id, int handle, long subId, out long value)
{
value = 0;
switch (id)
{
case 0:
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
case 12:
case 13:
case 14:
case 15:
case 16:
case 17:
case 18:
case 20:
case 21:
case 22:
{
if (subId != 0)
{
return KernelResult.InvalidCombination;
}
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
KProcess process = currentProcess.HandleTable.GetKProcess(handle);
if (process == null)
{
return KernelResult.InvalidHandle;
}
switch (id)
{
case 0: value = process.Capabilities.AllowedCpuCoresMask; break;
case 1: value = process.Capabilities.AllowedThreadPriosMask; break;
case 2: value = (long)process.MemoryManager.AliasRegionStart; break;
case 3: value = (long)(process.MemoryManager.AliasRegionEnd -
process.MemoryManager.AliasRegionStart); break;
case 4: value = (long)process.MemoryManager.HeapRegionStart; break;
case 5: value = (long)(process.MemoryManager.HeapRegionEnd -
process.MemoryManager.HeapRegionStart); break;
case 6: value = (long)process.GetMemoryCapacity(); break;
case 7: value = (long)process.GetMemoryUsage(); break;
case 12: value = (long)process.MemoryManager.GetAddrSpaceBaseAddr(); break;
case 13: value = (long)process.MemoryManager.GetAddrSpaceSize(); break;
case 14: value = (long)process.MemoryManager.StackRegionStart; break;
case 15: value = (long)(process.MemoryManager.StackRegionEnd -
process.MemoryManager.StackRegionStart); break;
case 16: value = (long)process.PersonalMmHeapPagesCount * KMemoryManager.PageSize; break;
case 17:
if (process.PersonalMmHeapPagesCount != 0)
{
value = process.MemoryManager.GetMmUsedPages() * KMemoryManager.PageSize;
}
break;
case 18: value = process.TitleId; break;
case 20: value = (long)process.UserExceptionContextAddress; break;
case 21: value = (long)process.GetMemoryCapacityWithoutPersonalMmHeap(); break;
case 22: value = (long)process.GetMemoryUsageWithoutPersonalMmHeap(); break;
}
break;
}
case 8:
{
if (handle != 0)
{
return KernelResult.InvalidHandle;
}
if (subId != 0)
{
return KernelResult.InvalidCombination;
}
value = _system.Scheduler.GetCurrentProcess().Debug ? 1 : 0;
break;
}
case 9:
{
if (handle != 0)
{
return KernelResult.InvalidHandle;
}
if (subId != 0)
{
return KernelResult.InvalidCombination;
}
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
if (currentProcess.ResourceLimit != null)
{
KHandleTable handleTable = currentProcess.HandleTable;
KResourceLimit resourceLimit = currentProcess.ResourceLimit;
KernelResult result = handleTable.GenerateHandle(resourceLimit, out int resLimHandle);
if (result != KernelResult.Success)
{
return result;
}
value = (uint)resLimHandle;
}
break;
}
case 10:
{
if (handle != 0)
{
return KernelResult.InvalidHandle;
}
int currentCore = _system.Scheduler.GetCurrentThread().CurrentCore;
if (subId != -1 && subId != currentCore)
{
return KernelResult.InvalidCombination;
}
value = _system.Scheduler.CoreContexts[currentCore].TotalIdleTimeTicks;
break;
}
case 11:
{
if (handle != 0)
{
return KernelResult.InvalidHandle;
}
if ((ulong)subId > 3)
{
return KernelResult.InvalidCombination;
}
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
value = currentProcess.RandomEntropy[subId];
break;
}
case 0xf0000002u:
{
if (subId < -1 || subId > 3)
{
return KernelResult.InvalidCombination;
}
KThread thread = _system.Scheduler.GetCurrentProcess().HandleTable.GetKThread(handle);
if (thread == null)
{
return KernelResult.InvalidHandle;
}
KThread currentThread = _system.Scheduler.GetCurrentThread();
int currentCore = currentThread.CurrentCore;
if (subId != -1 && subId != currentCore)
{
return KernelResult.Success;
}
KCoreContext coreContext = _system.Scheduler.CoreContexts[currentCore];
long timeDelta = PerformanceCounter.ElapsedMilliseconds - coreContext.LastContextSwitchTime;
if (subId != -1)
{
value = KTimeManager.ConvertMillisecondsToTicks(timeDelta);
}
else
{
long totalTimeRunning = thread.TotalTimeRunning;
if (thread == currentThread)
{
totalTimeRunning += timeDelta;
}
value = KTimeManager.ConvertMillisecondsToTicks(totalTimeRunning);
}
break;
}
default: return KernelResult.InvalidEnumValue;
}
return KernelResult.Success;
}
public KernelResult CreateEvent64(out int wEventHandle, out int rEventHandle)
{
return CreateEvent(out wEventHandle, out rEventHandle);
}
private KernelResult CreateEvent(out int wEventHandle, out int rEventHandle)
{
KEvent Event = new KEvent(_system);
KernelResult result = _process.HandleTable.GenerateHandle(Event.WritableEvent, out wEventHandle);
if (result == KernelResult.Success)
{
result = _process.HandleTable.GenerateHandle(Event.ReadableEvent, out rEventHandle);
if (result != KernelResult.Success)
{
_process.HandleTable.CloseHandle(wEventHandle);
}
}
else
{
rEventHandle = 0;
}
return result;
}
public KernelResult GetProcessList64(ulong address, int maxCount, out int count)
{
return GetProcessList(address, maxCount, out count);
}
private KernelResult GetProcessList(ulong address, int maxCount, out int count)
{
count = 0;
if ((maxCount >> 28) != 0)
{
return KernelResult.MaximumExceeded;
}
if (maxCount != 0)
{
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
ulong copySize = (ulong)maxCount * 8;
if (address + copySize <= address)
{
return KernelResult.InvalidMemState;
}
if (currentProcess.MemoryManager.OutsideAddrSpace(address, copySize))
{
return KernelResult.InvalidMemState;
}
}
int copyCount = 0;
lock (_system.Processes)
{
foreach (KProcess process in _system.Processes.Values)
{
if (copyCount < maxCount)
{
if (!KernelTransfer.KernelToUserInt64(_system, address + (ulong)copyCount * 8, process.Pid))
{
return KernelResult.UserCopyFailed;
}
}
copyCount++;
}
}
count = copyCount;
return KernelResult.Success;
}
public KernelResult GetSystemInfo64(uint id, int handle, long subId, out long value)
{
return GetSystemInfo(id, handle, subId, out value);
}
private KernelResult GetSystemInfo(uint id, int handle, long subId, out long value)
{
value = 0;
if (id > 2)
{
return KernelResult.InvalidEnumValue;
}
if (handle != 0)
{
return KernelResult.InvalidHandle;
}
if (id < 2)
{
if ((ulong)subId > 3)
{
return KernelResult.InvalidCombination;
}
KMemoryRegionManager region = _system.MemoryRegions[subId];
switch (id)
{
//Memory region capacity.
case 0: value = (long)region.Size; break;
//Memory region free space.
case 1:
{
ulong freePagesCount = region.GetFreePages();
value = (long)(freePagesCount * KMemoryManager.PageSize);
break;
}
}
}
else /* if (Id == 2) */
{
if ((ulong)subId > 1)
{
return KernelResult.InvalidCombination;
}
switch (subId)
{
case 0: value = _system.PrivilegedProcessLowestId; break;
case 1: value = _system.PrivilegedProcessHighestId; break;
}
}
return KernelResult.Success;
}
public KernelResult CreatePort64(
int maxSessions,
bool isLight,
ulong namePtr,
out int serverPortHandle,
out int clientPortHandle)
{
return CreatePort(maxSessions, isLight, namePtr, out serverPortHandle, out clientPortHandle);
}
private KernelResult CreatePort(
int maxSessions,
bool isLight,
ulong namePtr,
out int serverPortHandle,
out int clientPortHandle)
{
serverPortHandle = clientPortHandle = 0;
if (maxSessions < 1)
{
return KernelResult.MaximumExceeded;
}
KPort port = new KPort(_system);
port.Initialize(maxSessions, isLight, (long)namePtr);
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
KernelResult result = currentProcess.HandleTable.GenerateHandle(port.ClientPort, out clientPortHandle);
if (result != KernelResult.Success)
{
return result;
}
result = currentProcess.HandleTable.GenerateHandle(port.ServerPort, out serverPortHandle);
if (result != KernelResult.Success)
{
currentProcess.HandleTable.CloseHandle(clientPortHandle);
}
return result;
}
public KernelResult ManageNamedPort64(ulong namePtr, int maxSessions, out int handle)
{
return ManageNamedPort(namePtr, maxSessions, out handle);
}
private KernelResult ManageNamedPort(ulong namePtr, int maxSessions, out int handle)
{
handle = 0;
if (!KernelTransfer.UserToKernelString(_system, namePtr, 12, out string name))
{
return KernelResult.UserCopyFailed;
}
if (maxSessions < 0 || name.Length > 11)
{
return KernelResult.MaximumExceeded;
}
if (maxSessions == 0)
{
return KClientPort.RemoveName(_system, name);
}
KPort port = new KPort(_system);
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
KernelResult result = currentProcess.HandleTable.GenerateHandle(port.ServerPort, out handle);
if (result != KernelResult.Success)
{
return result;
}
port.Initialize(maxSessions, false, 0);
result = port.SetName(name);
if (result != KernelResult.Success)
{
currentProcess.HandleTable.CloseHandle(handle);
}
return result;
}
}
}

View file

@ -0,0 +1,340 @@
using ChocolArm64.State;
using Ryujinx.Common.Logging;
using Ryujinx.HLE.HOS.Kernel.Common;
using System;
using System.Collections.Generic;
using System.Reflection;
using System.Reflection.Emit;
namespace Ryujinx.HLE.HOS.Kernel.SupervisorCall
{
static class SvcTable
{
private const int SvcFuncMaxArguments = 8;
private static Dictionary<int, string> _svcFuncs64;
private static Action<SvcHandler, CpuThreadState>[] _svcTable64;
static SvcTable()
{
_svcFuncs64 = new Dictionary<int, string>
{
{ 0x01, nameof(SvcHandler.SetHeapSize64) },
{ 0x03, nameof(SvcHandler.SetMemoryAttribute64) },
{ 0x04, nameof(SvcHandler.MapMemory64) },
{ 0x05, nameof(SvcHandler.UnmapMemory64) },
{ 0x06, nameof(SvcHandler.QueryMemory64) },
{ 0x07, nameof(SvcHandler.ExitProcess64) },
{ 0x08, nameof(SvcHandler.CreateThread64) },
{ 0x09, nameof(SvcHandler.StartThread64) },
{ 0x0a, nameof(SvcHandler.ExitThread64) },
{ 0x0b, nameof(SvcHandler.SleepThread64) },
{ 0x0c, nameof(SvcHandler.GetThreadPriority64) },
{ 0x0d, nameof(SvcHandler.SetThreadPriority64) },
{ 0x0e, nameof(SvcHandler.GetThreadCoreMask64) },
{ 0x0f, nameof(SvcHandler.SetThreadCoreMask64) },
{ 0x10, nameof(SvcHandler.GetCurrentProcessorNumber64) },
{ 0x11, nameof(SvcHandler.SignalEvent64) },
{ 0x12, nameof(SvcHandler.ClearEvent64) },
{ 0x13, nameof(SvcHandler.MapSharedMemory64) },
{ 0x14, nameof(SvcHandler.UnmapSharedMemory64) },
{ 0x15, nameof(SvcHandler.CreateTransferMemory64) },
{ 0x16, nameof(SvcHandler.CloseHandle64) },
{ 0x17, nameof(SvcHandler.ResetSignal64) },
{ 0x18, nameof(SvcHandler.WaitSynchronization64) },
{ 0x19, nameof(SvcHandler.CancelSynchronization64) },
{ 0x1a, nameof(SvcHandler.ArbitrateLock64) },
{ 0x1b, nameof(SvcHandler.ArbitrateUnlock64) },
{ 0x1c, nameof(SvcHandler.WaitProcessWideKeyAtomic64) },
{ 0x1d, nameof(SvcHandler.SignalProcessWideKey64) },
{ 0x1e, nameof(SvcHandler.GetSystemTick64) },
{ 0x1f, nameof(SvcHandler.ConnectToNamedPort64) },
{ 0x21, nameof(SvcHandler.SendSyncRequest64) },
{ 0x22, nameof(SvcHandler.SendSyncRequestWithUserBuffer64) },
{ 0x24, nameof(SvcHandler.GetProcessId64) },
{ 0x25, nameof(SvcHandler.GetThreadId64) },
{ 0x26, nameof(SvcHandler.Break64) },
{ 0x27, nameof(SvcHandler.OutputDebugString64) },
{ 0x29, nameof(SvcHandler.GetInfo64) },
{ 0x2c, nameof(SvcHandler.MapPhysicalMemory64) },
{ 0x2d, nameof(SvcHandler.UnmapPhysicalMemory64) },
{ 0x32, nameof(SvcHandler.SetThreadActivity64) },
{ 0x33, nameof(SvcHandler.GetThreadContext364) },
{ 0x34, nameof(SvcHandler.WaitForAddress64) },
{ 0x35, nameof(SvcHandler.SignalToAddress64) },
{ 0x45, nameof(SvcHandler.CreateEvent64) },
{ 0x65, nameof(SvcHandler.GetProcessList64) },
{ 0x6f, nameof(SvcHandler.GetSystemInfo64) },
{ 0x70, nameof(SvcHandler.CreatePort64) },
{ 0x71, nameof(SvcHandler.ManageNamedPort64) }
};
_svcTable64 = new Action<SvcHandler, CpuThreadState>[0x80];
}
public static Action<SvcHandler, CpuThreadState> GetSvcFunc(int svcId)
{
if (_svcTable64[svcId] != null)
{
return _svcTable64[svcId];
}
if (_svcFuncs64.TryGetValue(svcId, out string svcName))
{
return _svcTable64[svcId] = GenerateMethod(svcName);
}
return null;
}
private static Action<SvcHandler, CpuThreadState> GenerateMethod(string svcName)
{
Type[] argTypes = new Type[] { typeof(SvcHandler), typeof(CpuThreadState) };
DynamicMethod method = new DynamicMethod(svcName, null, argTypes);
MethodInfo methodInfo = typeof(SvcHandler).GetMethod(svcName);
ParameterInfo[] methodArgs = methodInfo.GetParameters();
if (methodArgs.Length > SvcFuncMaxArguments)
{
throw new InvalidOperationException($"Method \"{svcName}\" has too many arguments, max is 8.");
}
ILGenerator generator = method.GetILGenerator();
void ConvertToArgType(Type sourceType)
{
CheckIfTypeIsSupported(sourceType, svcName);
switch (Type.GetTypeCode(sourceType))
{
case TypeCode.UInt32: generator.Emit(OpCodes.Conv_U4); break;
case TypeCode.Int32: generator.Emit(OpCodes.Conv_I4); break;
case TypeCode.UInt16: generator.Emit(OpCodes.Conv_U2); break;
case TypeCode.Int16: generator.Emit(OpCodes.Conv_I2); break;
case TypeCode.Byte: generator.Emit(OpCodes.Conv_U1); break;
case TypeCode.SByte: generator.Emit(OpCodes.Conv_I1); break;
case TypeCode.Boolean:
generator.Emit(OpCodes.Conv_I4);
generator.Emit(OpCodes.Ldc_I4_1);
generator.Emit(OpCodes.And);
break;
}
}
void ConvertToFieldType(Type sourceType)
{
CheckIfTypeIsSupported(sourceType, svcName);
switch (Type.GetTypeCode(sourceType))
{
case TypeCode.UInt32:
case TypeCode.Int32:
case TypeCode.UInt16:
case TypeCode.Int16:
case TypeCode.Byte:
case TypeCode.SByte:
case TypeCode.Boolean:
generator.Emit(OpCodes.Conv_U8);
break;
}
}
//For functions returning output values, the first registers
//are used to hold pointers where the value will be stored,
//so they can't be used to pass argument and we must
//skip them.
int byRefArgsCount = 0;
for (int index = 0; index < methodArgs.Length; index++)
{
if (methodArgs[index].ParameterType.IsByRef)
{
byRefArgsCount++;
}
}
//Print all the arguments for debugging purposes.
int inputArgsCount = methodArgs.Length - byRefArgsCount;
generator.Emit(OpCodes.Ldc_I4_S, inputArgsCount);
generator.Emit(OpCodes.Newarr, typeof(object));
string argsFormat = svcName;
for (int index = 0; index < inputArgsCount; index++)
{
argsFormat += $" {methodArgs[index].Name}: 0x{{{index}:X8}},";
generator.Emit(OpCodes.Dup);
generator.Emit(OpCodes.Ldc_I4_S, index);
generator.Emit(OpCodes.Conv_I);
generator.Emit(OpCodes.Ldarg_1);
generator.Emit(OpCodes.Ldfld, GetStateFieldX(byRefArgsCount + index));
generator.Emit(OpCodes.Box, typeof(ulong));
generator.Emit(OpCodes.Stelem_Ref);
}
argsFormat = argsFormat.Substring(0, argsFormat.Length - 1);
generator.Emit(OpCodes.Ldstr, argsFormat);
BindingFlags staticNonPublic = BindingFlags.NonPublic | BindingFlags.Static;
MethodInfo printArgsMethod = typeof(SvcTable).GetMethod(nameof(PrintArguments), staticNonPublic);
generator.Emit(OpCodes.Call, printArgsMethod);
//Call the SVC function handler.
generator.Emit(OpCodes.Ldarg_0);
List<LocalBuilder> locals = new List<LocalBuilder>();
for (int index = 0; index < methodArgs.Length; index++)
{
Type argType = methodArgs[index].ParameterType;
if (argType.IsByRef)
{
argType = argType.GetElementType();
LocalBuilder local = generator.DeclareLocal(argType);
locals.Add(local);
if (!methodArgs[index].IsOut)
{
throw new InvalidOperationException($"Method \"{svcName}\" has a invalid ref type \"{argType.Name}\".");
}
generator.Emit(OpCodes.Ldloca_S, (byte)local.LocalIndex);
}
else
{
generator.Emit(OpCodes.Ldarg_1);
generator.Emit(OpCodes.Ldfld, GetStateFieldX(byRefArgsCount + index));
ConvertToArgType(argType);
}
}
generator.Emit(OpCodes.Call, methodInfo);
int outRegIndex = 0;
Type retType = methodInfo.ReturnType;
//Print result code.
if (retType == typeof(KernelResult))
{
MethodInfo printResultMethod = typeof(SvcTable).GetMethod(nameof(PrintResult), staticNonPublic);
generator.Emit(OpCodes.Dup);
generator.Emit(OpCodes.Ldstr, svcName);
generator.Emit(OpCodes.Call, printResultMethod);
}
//Save return value into register X0 (when the method has a return value).
if (retType != typeof(void))
{
CheckIfTypeIsSupported(retType, svcName);
LocalBuilder tempLocal = generator.DeclareLocal(retType);
generator.Emit(OpCodes.Stloc, tempLocal);
generator.Emit(OpCodes.Ldarg_1);
generator.Emit(OpCodes.Ldloc, tempLocal);
ConvertToFieldType(retType);
generator.Emit(OpCodes.Stfld, GetStateFieldX(outRegIndex++));
}
for (int index = 0; index < locals.Count; index++)
{
generator.Emit(OpCodes.Ldarg_1);
generator.Emit(OpCodes.Ldloc, locals[index]);
ConvertToFieldType(locals[index].LocalType);
generator.Emit(OpCodes.Stfld, GetStateFieldX(outRegIndex++));
}
//Zero out the remaining unused registers.
while (outRegIndex < SvcFuncMaxArguments)
{
generator.Emit(OpCodes.Ldarg_1);
generator.Emit(OpCodes.Ldc_I8, 0L);
generator.Emit(OpCodes.Stfld, GetStateFieldX(outRegIndex++));
}
generator.Emit(OpCodes.Ret);
return (Action<SvcHandler, CpuThreadState>)method.CreateDelegate(typeof(Action<SvcHandler, CpuThreadState>));
}
private static FieldInfo GetStateFieldX(int index)
{
switch (index)
{
case 0: return typeof(CpuThreadState).GetField(nameof(CpuThreadState.X0));
case 1: return typeof(CpuThreadState).GetField(nameof(CpuThreadState.X1));
case 2: return typeof(CpuThreadState).GetField(nameof(CpuThreadState.X2));
case 3: return typeof(CpuThreadState).GetField(nameof(CpuThreadState.X3));
case 4: return typeof(CpuThreadState).GetField(nameof(CpuThreadState.X4));
case 5: return typeof(CpuThreadState).GetField(nameof(CpuThreadState.X5));
case 6: return typeof(CpuThreadState).GetField(nameof(CpuThreadState.X6));
case 7: return typeof(CpuThreadState).GetField(nameof(CpuThreadState.X7));
}
throw new ArgumentOutOfRangeException(nameof(index));
}
private static void CheckIfTypeIsSupported(Type type, string svcName)
{
switch (Type.GetTypeCode(type))
{
case TypeCode.UInt64:
case TypeCode.Int64:
case TypeCode.UInt32:
case TypeCode.Int32:
case TypeCode.UInt16:
case TypeCode.Int16:
case TypeCode.Byte:
case TypeCode.SByte:
case TypeCode.Boolean:
return;
}
throw new InvalidSvcException($"Method \"{svcName}\" has a invalid ref type \"{type.Name}\".");
}
private static void PrintResult(KernelResult result, string svcName)
{
if (result != KernelResult.Success &&
result != KernelResult.TimedOut &&
result != KernelResult.Cancelled &&
result != KernelResult.InvalidState)
{
Logger.PrintWarning(LogClass.KernelSvc, $"{svcName} returned error {result}.");
}
else
{
Logger.PrintDebug(LogClass.KernelSvc, $"{svcName} returned result {result}.");
}
}
private static void PrintArguments(object[] argValues, string format)
{
Logger.PrintDebug(LogClass.KernelSvc, string.Format(format, argValues));
}
}
}

View file

@ -0,0 +1,420 @@
using Ryujinx.HLE.HOS.Kernel.Common;
using Ryujinx.HLE.HOS.Kernel.Process;
using Ryujinx.HLE.HOS.Kernel.Threading;
namespace Ryujinx.HLE.HOS.Kernel.SupervisorCall
{
partial class SvcHandler
{
public KernelResult CreateThread64(
ulong entrypoint,
ulong argsPtr,
ulong stackTop,
int priority,
int cpuCore,
out int handle)
{
return CreateThread(entrypoint, argsPtr, stackTop, priority, cpuCore, out handle);
}
private KernelResult CreateThread(
ulong entrypoint,
ulong argsPtr,
ulong stackTop,
int priority,
int cpuCore,
out int handle)
{
handle = 0;
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
if (cpuCore == -2)
{
cpuCore = currentProcess.DefaultCpuCore;
}
if ((uint)cpuCore >= KScheduler.CpuCoresCount || !currentProcess.IsCpuCoreAllowed(cpuCore))
{
return KernelResult.InvalidCpuCore;
}
if ((uint)priority >= KScheduler.PrioritiesCount || !currentProcess.IsPriorityAllowed(priority))
{
return KernelResult.InvalidPriority;
}
long timeout = KTimeManager.ConvertMillisecondsToNanoseconds(100);
if (currentProcess.ResourceLimit != null &&
!currentProcess.ResourceLimit.Reserve(LimitableResource.Thread, 1, timeout))
{
return KernelResult.ResLimitExceeded;
}
KThread thread = new KThread(_system);
KernelResult result = currentProcess.InitializeThread(
thread,
entrypoint,
argsPtr,
stackTop,
priority,
cpuCore);
if (result != KernelResult.Success)
{
currentProcess.ResourceLimit?.Release(LimitableResource.Thread, 1);
return result;
}
result = _process.HandleTable.GenerateHandle(thread, out handle);
if (result != KernelResult.Success)
{
thread.Terminate();
currentProcess.ResourceLimit?.Release(LimitableResource.Thread, 1);
}
return result;
}
public KernelResult StartThread64(int handle)
{
return StartThread(handle);
}
private KernelResult StartThread(int handle)
{
KThread thread = _process.HandleTable.GetObject<KThread>(handle);
if (thread != null)
{
return thread.Start();
}
else
{
return KernelResult.InvalidHandle;
}
}
public void ExitThread64()
{
ExitThread();
}
private void ExitThread()
{
KThread currentThread = _system.Scheduler.GetCurrentThread();
_system.Scheduler.ExitThread(currentThread);
currentThread.Exit();
}
public void SleepThread64(long timeout)
{
SleepThread(timeout);
}
private void SleepThread(long timeout)
{
KThread currentThread = _system.Scheduler.GetCurrentThread();
if (timeout < 1)
{
switch (timeout)
{
case 0: currentThread.Yield(); break;
case -1: currentThread.YieldWithLoadBalancing(); break;
case -2: currentThread.YieldAndWaitForLoadBalancing(); break;
}
}
else
{
currentThread.Sleep(timeout);
}
}
public KernelResult GetThreadPriority64(int handle, out int priority)
{
return GetThreadPriority(handle, out priority);
}
private KernelResult GetThreadPriority(int handle, out int priority)
{
KThread thread = _process.HandleTable.GetKThread(handle);
if (thread != null)
{
priority = thread.DynamicPriority;
return KernelResult.Success;
}
else
{
priority = 0;
return KernelResult.InvalidHandle;
}
}
public KernelResult SetThreadPriority64(int handle, int priority)
{
return SetThreadPriority(handle, priority);
}
public KernelResult SetThreadPriority(int handle, int priority)
{
//TODO: NPDM check.
KThread thread = _process.HandleTable.GetKThread(handle);
if (thread == null)
{
return KernelResult.InvalidHandle;
}
thread.SetPriority(priority);
return KernelResult.Success;
}
public KernelResult GetThreadCoreMask64(int handle, out int preferredCore, out long affinityMask)
{
return GetThreadCoreMask(handle, out preferredCore, out affinityMask);
}
private KernelResult GetThreadCoreMask(int handle, out int preferredCore, out long affinityMask)
{
KThread thread = _process.HandleTable.GetKThread(handle);
if (thread != null)
{
preferredCore = thread.PreferredCore;
affinityMask = thread.AffinityMask;
return KernelResult.Success;
}
else
{
preferredCore = 0;
affinityMask = 0;
return KernelResult.InvalidHandle;
}
}
public KernelResult SetThreadCoreMask64(int handle, int preferredCore, long affinityMask)
{
return SetThreadCoreMask(handle, preferredCore, affinityMask);
}
private KernelResult SetThreadCoreMask(int handle, int preferredCore, long affinityMask)
{
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
if (preferredCore == -2)
{
preferredCore = currentProcess.DefaultCpuCore;
affinityMask = 1 << preferredCore;
}
else
{
if ((currentProcess.Capabilities.AllowedCpuCoresMask | affinityMask) !=
currentProcess.Capabilities.AllowedCpuCoresMask)
{
return KernelResult.InvalidCpuCore;
}
if (affinityMask == 0)
{
return KernelResult.InvalidCombination;
}
if ((uint)preferredCore > 3)
{
if ((preferredCore | 2) != -1)
{
return KernelResult.InvalidCpuCore;
}
}
else if ((affinityMask & (1 << preferredCore)) == 0)
{
return KernelResult.InvalidCombination;
}
}
KThread thread = _process.HandleTable.GetKThread(handle);
if (thread == null)
{
return KernelResult.InvalidHandle;
}
return thread.SetCoreAndAffinityMask(preferredCore, affinityMask);
}
public int GetCurrentProcessorNumber64()
{
return _system.Scheduler.GetCurrentThread().CurrentCore;
}
public KernelResult GetThreadId64(int handle, out long threadUid)
{
return GetThreadId(handle, out threadUid);
}
private KernelResult GetThreadId(int handle, out long threadUid)
{
KThread thread = _process.HandleTable.GetKThread(handle);
if (thread != null)
{
threadUid = thread.ThreadUid;
return KernelResult.Success;
}
else
{
threadUid = 0;
return KernelResult.InvalidHandle;
}
}
public KernelResult SetThreadActivity64(int handle, bool pause)
{
return SetThreadActivity(handle, pause);
}
private KernelResult SetThreadActivity(int handle, bool pause)
{
KThread thread = _process.HandleTable.GetObject<KThread>(handle);
if (thread == null)
{
return KernelResult.InvalidHandle;
}
if (thread.Owner != _system.Scheduler.GetCurrentProcess())
{
return KernelResult.InvalidHandle;
}
if (thread == _system.Scheduler.GetCurrentThread())
{
return KernelResult.InvalidThread;
}
return thread.SetActivity(pause);
}
public KernelResult GetThreadContext364(ulong address, int handle)
{
return GetThreadContext3(address, handle);
}
private KernelResult GetThreadContext3(ulong address, int handle)
{
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
KThread currentThread = _system.Scheduler.GetCurrentThread();
KThread thread = _process.HandleTable.GetObject<KThread>(handle);
if (thread == null)
{
return KernelResult.InvalidHandle;
}
if (thread.Owner != currentProcess)
{
return KernelResult.InvalidHandle;
}
if (currentThread == thread)
{
return KernelResult.InvalidThread;
}
_memory.WriteUInt64((long)address + 0x0, thread.Context.ThreadState.X0);
_memory.WriteUInt64((long)address + 0x8, thread.Context.ThreadState.X1);
_memory.WriteUInt64((long)address + 0x10, thread.Context.ThreadState.X2);
_memory.WriteUInt64((long)address + 0x18, thread.Context.ThreadState.X3);
_memory.WriteUInt64((long)address + 0x20, thread.Context.ThreadState.X4);
_memory.WriteUInt64((long)address + 0x28, thread.Context.ThreadState.X5);
_memory.WriteUInt64((long)address + 0x30, thread.Context.ThreadState.X6);
_memory.WriteUInt64((long)address + 0x38, thread.Context.ThreadState.X7);
_memory.WriteUInt64((long)address + 0x40, thread.Context.ThreadState.X8);
_memory.WriteUInt64((long)address + 0x48, thread.Context.ThreadState.X9);
_memory.WriteUInt64((long)address + 0x50, thread.Context.ThreadState.X10);
_memory.WriteUInt64((long)address + 0x58, thread.Context.ThreadState.X11);
_memory.WriteUInt64((long)address + 0x60, thread.Context.ThreadState.X12);
_memory.WriteUInt64((long)address + 0x68, thread.Context.ThreadState.X13);
_memory.WriteUInt64((long)address + 0x70, thread.Context.ThreadState.X14);
_memory.WriteUInt64((long)address + 0x78, thread.Context.ThreadState.X15);
_memory.WriteUInt64((long)address + 0x80, thread.Context.ThreadState.X16);
_memory.WriteUInt64((long)address + 0x88, thread.Context.ThreadState.X17);
_memory.WriteUInt64((long)address + 0x90, thread.Context.ThreadState.X18);
_memory.WriteUInt64((long)address + 0x98, thread.Context.ThreadState.X19);
_memory.WriteUInt64((long)address + 0xa0, thread.Context.ThreadState.X20);
_memory.WriteUInt64((long)address + 0xa8, thread.Context.ThreadState.X21);
_memory.WriteUInt64((long)address + 0xb0, thread.Context.ThreadState.X22);
_memory.WriteUInt64((long)address + 0xb8, thread.Context.ThreadState.X23);
_memory.WriteUInt64((long)address + 0xc0, thread.Context.ThreadState.X24);
_memory.WriteUInt64((long)address + 0xc8, thread.Context.ThreadState.X25);
_memory.WriteUInt64((long)address + 0xd0, thread.Context.ThreadState.X26);
_memory.WriteUInt64((long)address + 0xd8, thread.Context.ThreadState.X27);
_memory.WriteUInt64((long)address + 0xe0, thread.Context.ThreadState.X28);
_memory.WriteUInt64((long)address + 0xe8, thread.Context.ThreadState.X29);
_memory.WriteUInt64((long)address + 0xf0, thread.Context.ThreadState.X30);
_memory.WriteUInt64((long)address + 0xf8, thread.Context.ThreadState.X31);
_memory.WriteInt64((long)address + 0x100, thread.LastPc);
_memory.WriteUInt64((long)address + 0x108, (ulong)thread.Context.ThreadState.Psr);
_memory.WriteVector128((long)address + 0x110, thread.Context.ThreadState.V0);
_memory.WriteVector128((long)address + 0x120, thread.Context.ThreadState.V1);
_memory.WriteVector128((long)address + 0x130, thread.Context.ThreadState.V2);
_memory.WriteVector128((long)address + 0x140, thread.Context.ThreadState.V3);
_memory.WriteVector128((long)address + 0x150, thread.Context.ThreadState.V4);
_memory.WriteVector128((long)address + 0x160, thread.Context.ThreadState.V5);
_memory.WriteVector128((long)address + 0x170, thread.Context.ThreadState.V6);
_memory.WriteVector128((long)address + 0x180, thread.Context.ThreadState.V7);
_memory.WriteVector128((long)address + 0x190, thread.Context.ThreadState.V8);
_memory.WriteVector128((long)address + 0x1a0, thread.Context.ThreadState.V9);
_memory.WriteVector128((long)address + 0x1b0, thread.Context.ThreadState.V10);
_memory.WriteVector128((long)address + 0x1c0, thread.Context.ThreadState.V11);
_memory.WriteVector128((long)address + 0x1d0, thread.Context.ThreadState.V12);
_memory.WriteVector128((long)address + 0x1e0, thread.Context.ThreadState.V13);
_memory.WriteVector128((long)address + 0x1f0, thread.Context.ThreadState.V14);
_memory.WriteVector128((long)address + 0x200, thread.Context.ThreadState.V15);
_memory.WriteVector128((long)address + 0x210, thread.Context.ThreadState.V16);
_memory.WriteVector128((long)address + 0x220, thread.Context.ThreadState.V17);
_memory.WriteVector128((long)address + 0x230, thread.Context.ThreadState.V18);
_memory.WriteVector128((long)address + 0x240, thread.Context.ThreadState.V19);
_memory.WriteVector128((long)address + 0x250, thread.Context.ThreadState.V20);
_memory.WriteVector128((long)address + 0x260, thread.Context.ThreadState.V21);
_memory.WriteVector128((long)address + 0x270, thread.Context.ThreadState.V22);
_memory.WriteVector128((long)address + 0x280, thread.Context.ThreadState.V23);
_memory.WriteVector128((long)address + 0x290, thread.Context.ThreadState.V24);
_memory.WriteVector128((long)address + 0x2a0, thread.Context.ThreadState.V25);
_memory.WriteVector128((long)address + 0x2b0, thread.Context.ThreadState.V26);
_memory.WriteVector128((long)address + 0x2c0, thread.Context.ThreadState.V27);
_memory.WriteVector128((long)address + 0x2d0, thread.Context.ThreadState.V28);
_memory.WriteVector128((long)address + 0x2e0, thread.Context.ThreadState.V29);
_memory.WriteVector128((long)address + 0x2f0, thread.Context.ThreadState.V30);
_memory.WriteVector128((long)address + 0x300, thread.Context.ThreadState.V31);
_memory.WriteInt32((long)address + 0x310, thread.Context.ThreadState.Fpcr);
_memory.WriteInt32((long)address + 0x314, thread.Context.ThreadState.Fpsr);
_memory.WriteInt64((long)address + 0x318, thread.Context.ThreadState.Tpidr);
return KernelResult.Success;
}
}
}

View file

@ -0,0 +1,250 @@
using Ryujinx.HLE.HOS.Kernel.Common;
using Ryujinx.HLE.HOS.Kernel.Process;
using Ryujinx.HLE.HOS.Kernel.Threading;
using System.Collections.Generic;
namespace Ryujinx.HLE.HOS.Kernel.SupervisorCall
{
partial class SvcHandler
{
public KernelResult WaitSynchronization64(ulong handlesPtr, int handlesCount, long timeout, out int handleIndex)
{
return WaitSynchronization(handlesPtr, handlesCount, timeout, out handleIndex);
}
private KernelResult WaitSynchronization(ulong handlesPtr, int handlesCount, long timeout, out int handleIndex)
{
handleIndex = 0;
if ((uint)handlesCount > 0x40)
{
return KernelResult.MaximumExceeded;
}
List<KSynchronizationObject> syncObjs = new List<KSynchronizationObject>();
for (int index = 0; index < handlesCount; index++)
{
int handle = _memory.ReadInt32((long)handlesPtr + index * 4);
KSynchronizationObject syncObj = _process.HandleTable.GetObject<KSynchronizationObject>(handle);
if (syncObj == null)
{
break;
}
syncObjs.Add(syncObj);
}
return _system.Synchronization.WaitFor(syncObjs.ToArray(), timeout, out handleIndex);
}
public KernelResult CancelSynchronization64(int handle)
{
return CancelSynchronization(handle);
}
private KernelResult CancelSynchronization(int handle)
{
KThread thread = _process.HandleTable.GetKThread(handle);
if (thread == null)
{
return KernelResult.InvalidHandle;
}
thread.CancelSynchronization();
return KernelResult.Success;
}
public KernelResult ArbitrateLock64(int ownerHandle, ulong mutexAddress, int requesterHandle)
{
return ArbitrateLock(ownerHandle, mutexAddress, requesterHandle);
}
private KernelResult ArbitrateLock(int ownerHandle, ulong mutexAddress, int requesterHandle)
{
if (IsPointingInsideKernel(mutexAddress))
{
return KernelResult.InvalidMemState;
}
if (IsAddressNotWordAligned(mutexAddress))
{
return KernelResult.InvalidAddress;
}
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
return currentProcess.AddressArbiter.ArbitrateLock(ownerHandle, mutexAddress, requesterHandle);
}
public KernelResult ArbitrateUnlock64(ulong mutexAddress)
{
return ArbitrateUnlock(mutexAddress);
}
private KernelResult ArbitrateUnlock(ulong mutexAddress)
{
if (IsPointingInsideKernel(mutexAddress))
{
return KernelResult.InvalidMemState;
}
if (IsAddressNotWordAligned(mutexAddress))
{
return KernelResult.InvalidAddress;
}
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
return currentProcess.AddressArbiter.ArbitrateUnlock(mutexAddress);
}
public KernelResult WaitProcessWideKeyAtomic64(
ulong mutexAddress,
ulong condVarAddress,
int handle,
long timeout)
{
return WaitProcessWideKeyAtomic(mutexAddress, condVarAddress, handle, timeout);
}
private KernelResult WaitProcessWideKeyAtomic(
ulong mutexAddress,
ulong condVarAddress,
int handle,
long timeout)
{
if (IsPointingInsideKernel(mutexAddress))
{
return KernelResult.InvalidMemState;
}
if (IsAddressNotWordAligned(mutexAddress))
{
return KernelResult.InvalidAddress;
}
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
return currentProcess.AddressArbiter.WaitProcessWideKeyAtomic(
mutexAddress,
condVarAddress,
handle,
timeout);
}
public KernelResult SignalProcessWideKey64(ulong address, int count)
{
return SignalProcessWideKey(address, count);
}
private KernelResult SignalProcessWideKey(ulong address, int count)
{
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
currentProcess.AddressArbiter.SignalProcessWideKey(address, count);
return KernelResult.Success;
}
public KernelResult WaitForAddress64(ulong address, ArbitrationType type, int value, long timeout)
{
return WaitForAddress(address, type, value, timeout);
}
private KernelResult WaitForAddress(ulong address, ArbitrationType type, int value, long timeout)
{
if (IsPointingInsideKernel(address))
{
return KernelResult.InvalidMemState;
}
if (IsAddressNotWordAligned(address))
{
return KernelResult.InvalidAddress;
}
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
KernelResult result;
switch (type)
{
case ArbitrationType.WaitIfLessThan:
result = currentProcess.AddressArbiter.WaitForAddressIfLessThan(address, value, false, timeout);
break;
case ArbitrationType.DecrementAndWaitIfLessThan:
result = currentProcess.AddressArbiter.WaitForAddressIfLessThan(address, value, true, timeout);
break;
case ArbitrationType.WaitIfEqual:
result = currentProcess.AddressArbiter.WaitForAddressIfEqual(address, value, timeout);
break;
default:
result = KernelResult.InvalidEnumValue;
break;
}
return result;
}
public KernelResult SignalToAddress64(ulong address, SignalType type, int value, int count)
{
return SignalToAddress(address, type, value, count);
}
private KernelResult SignalToAddress(ulong address, SignalType type, int value, int count)
{
if (IsPointingInsideKernel(address))
{
return KernelResult.InvalidMemState;
}
if (IsAddressNotWordAligned(address))
{
return KernelResult.InvalidAddress;
}
KProcess currentProcess = _system.Scheduler.GetCurrentProcess();
KernelResult result;
switch (type)
{
case SignalType.Signal:
result = currentProcess.AddressArbiter.Signal(address, count);
break;
case SignalType.SignalAndIncrementIfEqual:
result = currentProcess.AddressArbiter.SignalAndIncrementIfEqual(address, value, count);
break;
case SignalType.SignalAndModifyIfEqual:
result = currentProcess.AddressArbiter.SignalAndModifyIfEqual(address, value, count);
break;
default:
result = KernelResult.InvalidEnumValue;
break;
}
return result;
}
private bool IsPointingInsideKernel(ulong address)
{
return (address + 0x1000000000) < 0xffffff000;
}
private bool IsAddressNotWordAligned(ulong address)
{
return (address & 3) != 0;
}
}
}