Code style fixes and nits on the HLE project (#355)

* Some style fixes and nits on ITimeZoneService

* Remove some unneeded usings

* Remove the Ryujinx.HLE.OsHle.Handles namespace

* Remove hbmenu automatic load on process exit

* Rename Ns to Device, rename Os to System, rename SystemState to State

* Move Exceptions and Utilities out of OsHle

* Rename OsHle to HOS

* Rename OsHle folder to HOS

* IManagerDisplayService and ISystemDisplayService style fixes

* BsdError shouldn't be public

* Add a empty new line before using static

* Remove unused file

* Some style fixes on NPDM

* Exit gracefully when the application is closed

* Code style fixes on IGeneralService

* Add 0x prefix on values printed as hex

* Small improvements on finalization code

* Move ProcessId and ThreadId out of AThreadState

* Rename VFs to FileSystem

* FsAccessHeader shouldn't be public. Also fix file names casing

* More case changes on NPDM

* Remove unused files

* Move using to the correct place on NPDM

* Use properties on KernelAccessControlMmio

* Address PR feedback
This commit is contained in:
gdkchan 2018-08-16 20:47:36 -03:00 committed by GitHub
parent 182d716867
commit 521751795a
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
258 changed files with 1574 additions and 1546 deletions

View file

@ -0,0 +1,111 @@
using ChocolArm64.Memory;
using ChocolArm64.State;
using static Ryujinx.HLE.HOS.ErrorCode;
namespace Ryujinx.HLE.HOS.Kernel
{
static class AddressArbiter
{
static ulong WaitForAddress(Process Process, AThreadState ThreadState, long Address, ulong Timeout)
{
KThread CurrentThread = Process.GetThread(ThreadState.Tpidr);
Process.Scheduler.SetReschedule(CurrentThread.ProcessorId);
CurrentThread.ArbiterWaitAddress = Address;
CurrentThread.ArbiterSignaled = false;
Process.Scheduler.EnterWait(CurrentThread, NsTimeConverter.GetTimeMs(Timeout));
if (!CurrentThread.ArbiterSignaled)
{
return MakeError(ErrorModule.Kernel, KernelErr.Timeout);
}
return 0;
}
public static ulong WaitForAddressIfLessThan(Process Process,
AThreadState ThreadState,
AMemory Memory,
long Address,
int Value,
ulong Timeout,
bool ShouldDecrement)
{
Memory.SetExclusive(ThreadState, Address);
int CurrentValue = Memory.ReadInt32(Address);
while (true)
{
if (Memory.TestExclusive(ThreadState, Address))
{
if (CurrentValue < Value)
{
if (ShouldDecrement)
{
Memory.WriteInt32(Address, CurrentValue - 1);
}
Memory.ClearExclusiveForStore(ThreadState);
}
else
{
Memory.ClearExclusiveForStore(ThreadState);
return MakeError(ErrorModule.Kernel, KernelErr.InvalidState);
}
break;
}
Memory.SetExclusive(ThreadState, Address);
CurrentValue = Memory.ReadInt32(Address);
}
if (Timeout == 0)
{
return MakeError(ErrorModule.Kernel, KernelErr.Timeout);
}
return WaitForAddress(Process, ThreadState, Address, Timeout);
}
public static ulong WaitForAddressIfEqual(Process Process,
AThreadState ThreadState,
AMemory Memory,
long Address,
int Value,
ulong Timeout)
{
if (Memory.ReadInt32(Address) != Value)
{
return MakeError(ErrorModule.Kernel, KernelErr.InvalidState);
}
if (Timeout == 0)
{
return MakeError(ErrorModule.Kernel, KernelErr.Timeout);
}
return WaitForAddress(Process, ThreadState, Address, Timeout);
}
}
enum ArbitrationType : int
{
WaitIfLessThan,
DecrementAndWaitIfLessThan,
WaitIfEqual
}
enum SignalType : int
{
Signal,
IncrementAndSignalIfEqual,
ModifyByWaitingCountAndSignalIfEqual
}
}

View file

@ -0,0 +1,10 @@
namespace Ryujinx.HLE.HOS.Kernel
{
enum AddressSpaceType
{
Addr32Bits = 0,
Addr36Bits = 1,
Addr36BitsNoMap = 2,
Addr39Bits = 3
}
}

View file

@ -0,0 +1,4 @@
namespace Ryujinx.HLE.HOS.Kernel
{
class KEvent : KSynchronizationObject { }
}

View file

@ -0,0 +1,43 @@
namespace Ryujinx.HLE.HOS.Kernel
{
class KMemoryBlock
{
public long BasePosition { get; set; }
public long PagesCount { get; set; }
public MemoryState State { get; set; }
public MemoryPermission Permission { get; set; }
public MemoryAttribute Attribute { get; set; }
public int IpcRefCount { get; set; }
public int DeviceRefCount { get; set; }
public KMemoryBlock(
long BasePosition,
long PagesCount,
MemoryState State,
MemoryPermission Permission,
MemoryAttribute Attribute)
{
this.BasePosition = BasePosition;
this.PagesCount = PagesCount;
this.State = State;
this.Attribute = Attribute;
this.Permission = Permission;
}
public KMemoryInfo GetInfo()
{
long Size = PagesCount * KMemoryManager.PageSize;
return new KMemoryInfo(
BasePosition,
Size,
State,
Permission,
Attribute,
IpcRefCount,
DeviceRefCount);
}
}
}

View file

@ -0,0 +1,33 @@
namespace Ryujinx.HLE.HOS.Kernel
{
class KMemoryInfo
{
public long Position { get; private set; }
public long Size { get; private set; }
public MemoryState State { get; private set; }
public MemoryPermission Permission { get; private set; }
public MemoryAttribute Attribute { get; private set; }
public int IpcRefCount { get; private set; }
public int DeviceRefCount { get; private set; }
public KMemoryInfo(
long Position,
long Size,
MemoryState State,
MemoryPermission Permission,
MemoryAttribute Attribute,
int IpcRefCount,
int DeviceRefCount)
{
this.Position = Position;
this.Size = Size;
this.State = State;
this.Attribute = Attribute;
this.Permission = Permission;
this.IpcRefCount = IpcRefCount;
this.DeviceRefCount = DeviceRefCount;
}
}
}

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,34 @@
using System.Collections.Generic;
namespace Ryujinx.HLE.HOS.Kernel
{
class KProcessHandleTable
{
private IdDictionary Handles;
public KProcessHandleTable()
{
Handles = new IdDictionary();
}
public int OpenHandle(object Obj)
{
return Handles.Add(Obj);
}
public T GetData<T>(int Handle)
{
return Handles.GetData<T>(Handle);
}
public object CloseHandle(int Handle)
{
return Handles.Delete(Handle);
}
public ICollection<object> Clear()
{
return Handles.Clear();
}
}
}

View file

@ -0,0 +1,370 @@
using Ryujinx.HLE.Logging;
using System;
using System.Collections.Concurrent;
using System.Threading;
namespace Ryujinx.HLE.HOS.Kernel
{
class KProcessScheduler : IDisposable
{
private ConcurrentDictionary<KThread, SchedulerThread> AllThreads;
private ThreadQueue WaitingToRun;
private KThread[] CoreThreads;
private bool[] CoreReschedule;
private object SchedLock;
private Logger Log;
public KProcessScheduler(Logger Log)
{
this.Log = Log;
AllThreads = new ConcurrentDictionary<KThread, SchedulerThread>();
WaitingToRun = new ThreadQueue();
CoreThreads = new KThread[4];
CoreReschedule = new bool[4];
SchedLock = new object();
}
public void StartThread(KThread Thread)
{
lock (SchedLock)
{
SchedulerThread SchedThread = new SchedulerThread(Thread);
if (!AllThreads.TryAdd(Thread, SchedThread))
{
return;
}
if (TryAddToCore(Thread))
{
Thread.Thread.Execute();
PrintDbgThreadInfo(Thread, "running.");
}
else
{
WaitingToRun.Push(SchedThread);
PrintDbgThreadInfo(Thread, "waiting to run.");
}
}
}
public void RemoveThread(KThread Thread)
{
PrintDbgThreadInfo(Thread, "exited.");
lock (SchedLock)
{
if (AllThreads.TryRemove(Thread, out SchedulerThread SchedThread))
{
WaitingToRun.Remove(SchedThread);
SchedThread.Dispose();
}
int ActualCore = Thread.ActualCore;
SchedulerThread NewThread = WaitingToRun.Pop(ActualCore);
if (NewThread == null)
{
Log.PrintDebug(LogClass.KernelScheduler, $"Nothing to run on core {ActualCore}!");
CoreThreads[ActualCore] = null;
return;
}
NewThread.Thread.ActualCore = ActualCore;
RunThread(NewThread);
}
}
public void SetThreadActivity(KThread Thread, bool Active)
{
SchedulerThread SchedThread = AllThreads[Thread];
SchedThread.IsActive = Active;
if (Active)
{
SchedThread.WaitActivity.Set();
}
else
{
SchedThread.WaitActivity.Reset();
}
}
public void EnterWait(KThread Thread, int TimeoutMs = Timeout.Infinite)
{
SchedulerThread SchedThread = AllThreads[Thread];
Suspend(Thread);
SchedThread.WaitSync.WaitOne(TimeoutMs);
TryResumingExecution(SchedThread);
}
public void WakeUp(KThread Thread)
{
AllThreads[Thread].WaitSync.Set();
}
public void ForceWakeUp(KThread Thread)
{
if (AllThreads.TryGetValue(Thread, out SchedulerThread SchedThread))
{
SchedThread.WaitSync.Set();
SchedThread.WaitActivity.Set();
SchedThread.WaitSched.Set();
}
}
public void ChangeCore(KThread Thread, int IdealCore, int CoreMask)
{
lock (SchedLock)
{
if (IdealCore != -3)
{
Thread.IdealCore = IdealCore;
}
Thread.CoreMask = CoreMask;
if (AllThreads.ContainsKey(Thread))
{
SetReschedule(Thread.ActualCore);
SchedulerThread SchedThread = AllThreads[Thread];
//Note: Aways if the thread is on the queue first, and try
//adding to a new core later, to ensure that a thread that
//is already running won't be added to another core.
if (WaitingToRun.HasThread(SchedThread) && TryAddToCore(Thread))
{
WaitingToRun.Remove(SchedThread);
RunThread(SchedThread);
}
}
}
}
public void Suspend(KThread Thread)
{
lock (SchedLock)
{
PrintDbgThreadInfo(Thread, "suspended.");
int ActualCore = Thread.ActualCore;
CoreReschedule[ActualCore] = false;
SchedulerThread SchedThread = WaitingToRun.Pop(ActualCore);
if (SchedThread != null)
{
SchedThread.Thread.ActualCore = ActualCore;
CoreThreads[ActualCore] = SchedThread.Thread;
RunThread(SchedThread);
}
else
{
Log.PrintDebug(LogClass.KernelScheduler, $"Nothing to run on core {Thread.ActualCore}!");
CoreThreads[ActualCore] = null;
}
}
}
public void SetReschedule(int Core)
{
lock (SchedLock)
{
CoreReschedule[Core] = true;
}
}
public void Reschedule(KThread Thread)
{
bool NeedsReschedule;
lock (SchedLock)
{
int ActualCore = Thread.ActualCore;
NeedsReschedule = CoreReschedule[ActualCore];
CoreReschedule[ActualCore] = false;
}
if (NeedsReschedule)
{
Yield(Thread, Thread.ActualPriority - 1);
}
}
public void Yield(KThread Thread)
{
Yield(Thread, Thread.ActualPriority);
}
private void Yield(KThread Thread, int MinPriority)
{
PrintDbgThreadInfo(Thread, "yielded execution.");
lock (SchedLock)
{
int ActualCore = Thread.ActualCore;
SchedulerThread NewThread = WaitingToRun.Pop(ActualCore, MinPriority);
if (NewThread != null)
{
NewThread.Thread.ActualCore = ActualCore;
CoreThreads[ActualCore] = NewThread.Thread;
RunThread(NewThread);
}
else
{
CoreThreads[ActualCore] = null;
}
}
Resume(Thread);
}
public void Resume(KThread Thread)
{
TryResumingExecution(AllThreads[Thread]);
}
private void TryResumingExecution(SchedulerThread SchedThread)
{
KThread Thread = SchedThread.Thread;
PrintDbgThreadInfo(Thread, "trying to resume...");
SchedThread.WaitActivity.WaitOne();
lock (SchedLock)
{
if (TryAddToCore(Thread))
{
PrintDbgThreadInfo(Thread, "resuming execution...");
return;
}
WaitingToRun.Push(SchedThread);
SetReschedule(Thread.ProcessorId);
PrintDbgThreadInfo(Thread, "entering wait state...");
}
SchedThread.WaitSched.WaitOne();
PrintDbgThreadInfo(Thread, "resuming execution...");
}
private void RunThread(SchedulerThread SchedThread)
{
if (!SchedThread.Thread.Thread.Execute())
{
PrintDbgThreadInfo(SchedThread.Thread, "waked.");
SchedThread.WaitSched.Set();
}
else
{
PrintDbgThreadInfo(SchedThread.Thread, "running.");
}
}
public void Resort(KThread Thread)
{
if (AllThreads.TryGetValue(Thread, out SchedulerThread SchedThread))
{
WaitingToRun.Resort(SchedThread);
}
}
private bool TryAddToCore(KThread Thread)
{
//First, try running it on Ideal Core.
int IdealCore = Thread.IdealCore;
if (IdealCore != -1 && CoreThreads[IdealCore] == null)
{
Thread.ActualCore = IdealCore;
CoreThreads[IdealCore] = Thread;
return true;
}
//If that fails, then try running on any core allowed by Core Mask.
int CoreMask = Thread.CoreMask;
for (int Core = 0; Core < CoreThreads.Length; Core++, CoreMask >>= 1)
{
if ((CoreMask & 1) != 0 && CoreThreads[Core] == null)
{
Thread.ActualCore = Core;
CoreThreads[Core] = Thread;
return true;
}
}
return false;
}
private void PrintDbgThreadInfo(KThread Thread, string Message)
{
Log.PrintDebug(LogClass.KernelScheduler, "(" +
"ThreadId = " + Thread.ThreadId + ", " +
"CoreMask = 0x" + Thread.CoreMask.ToString("x1") + ", " +
"ActualCore = " + Thread.ActualCore + ", " +
"IdealCore = " + Thread.IdealCore + ", " +
"ActualPriority = " + Thread.ActualPriority + ", " +
"WantedPriority = " + Thread.WantedPriority + ") " + Message);
}
public void Dispose()
{
Dispose(true);
}
protected virtual void Dispose(bool Disposing)
{
if (Disposing)
{
foreach (SchedulerThread SchedThread in AllThreads.Values)
{
SchedThread.Dispose();
}
}
}
}
}

View file

@ -0,0 +1,31 @@
using Ryujinx.HLE.HOS.Services;
using System;
namespace Ryujinx.HLE.HOS.Kernel
{
class KSession : IDisposable
{
public IpcService Service { get; private set; }
public string ServiceName { get; private set; }
public KSession(IpcService Service, string ServiceName)
{
this.Service = Service;
this.ServiceName = ServiceName;
}
public void Dispose()
{
Dispose(true);
}
protected virtual void Dispose(bool Disposing)
{
if (Disposing && Service is IDisposable DisposableService)
{
DisposableService.Dispose();
}
}
}
}

View file

@ -0,0 +1,14 @@
namespace Ryujinx.HLE.HOS.Kernel
{
class KSharedMemory
{
public long PA { get; private set; }
public long Size { get; private set; }
public KSharedMemory(long PA, long Size)
{
this.PA = PA;
this.Size = Size;
}
}
}

View file

@ -0,0 +1,28 @@
using System;
using System.Threading;
namespace Ryujinx.HLE.HOS.Kernel
{
class KSynchronizationObject : IDisposable
{
public ManualResetEvent WaitEvent { get; private set; }
public KSynchronizationObject()
{
WaitEvent = new ManualResetEvent(false);
}
public void Dispose()
{
Dispose(true);
}
protected virtual void Dispose(bool Disposing)
{
if (Disposing)
{
WaitEvent.Dispose();
}
}
}
}

View file

@ -0,0 +1,98 @@
using ChocolArm64;
using System.Collections.Generic;
namespace Ryujinx.HLE.HOS.Kernel
{
class KThread : KSynchronizationObject
{
public AThread Thread { get; private set; }
public int CoreMask { get; set; }
public long MutexAddress { get; set; }
public long CondVarAddress { get; set; }
public long ArbiterWaitAddress { get; set; }
public bool CondVarSignaled { get; set; }
public bool ArbiterSignaled { get; set; }
private Process Process;
public List<KThread> MutexWaiters { get; private set; }
public KThread MutexOwner { get; set; }
public int ActualPriority { get; private set; }
public int WantedPriority { get; private set; }
public int ActualCore { get; set; }
public int ProcessorId { get; set; }
public int IdealCore { get; set; }
public int WaitHandle { get; set; }
public long LastPc { get; set; }
public int ThreadId { get; private set; }
public KThread(
AThread Thread,
Process Process,
int ProcessorId,
int Priority,
int ThreadId)
{
this.Thread = Thread;
this.Process = Process;
this.ProcessorId = ProcessorId;
this.IdealCore = ProcessorId;
this.ThreadId = ThreadId;
MutexWaiters = new List<KThread>();
CoreMask = 1 << ProcessorId;
ActualPriority = WantedPriority = Priority;
}
public void SetPriority(int Priority)
{
WantedPriority = Priority;
UpdatePriority();
}
public void UpdatePriority()
{
bool PriorityChanged;
lock (Process.ThreadSyncLock)
{
int OldPriority = ActualPriority;
int CurrPriority = WantedPriority;
foreach (KThread Thread in MutexWaiters)
{
int WantedPriority = Thread.WantedPriority;
if (CurrPriority > WantedPriority)
{
CurrPriority = WantedPriority;
}
}
PriorityChanged = CurrPriority != OldPriority;
ActualPriority = CurrPriority;
}
if (PriorityChanged)
{
Process.Scheduler.Resort(this);
MutexOwner?.UpdatePriority();
}
}
}
}

View file

@ -0,0 +1,60 @@
using System;
namespace Ryujinx.HLE.HOS.Kernel
{
class KTlsPageManager
{
private const int TlsEntrySize = 0x200;
private long PagePosition;
private int UsedSlots;
private bool[] Slots;
public bool IsEmpty => UsedSlots == 0;
public bool IsFull => UsedSlots == Slots.Length;
public KTlsPageManager(long PagePosition)
{
this.PagePosition = PagePosition;
Slots = new bool[KMemoryManager.PageSize / TlsEntrySize];
}
public bool TryGetFreeTlsAddr(out long Position)
{
Position = PagePosition;
for (int Index = 0; Index < Slots.Length; Index++)
{
if (!Slots[Index])
{
Slots[Index] = true;
UsedSlots++;
return true;
}
Position += TlsEntrySize;
}
Position = 0;
return false;
}
public void FreeTlsSlot(int Slot)
{
if ((uint)Slot > Slots.Length)
{
throw new ArgumentOutOfRangeException(nameof(Slot));
}
Slots[Slot] = false;
UsedSlots--;
}
}
}

View file

@ -0,0 +1,14 @@
namespace Ryujinx.HLE.HOS.Kernel
{
class KTransferMemory
{
public long Position { get; private set; }
public long Size { get; private set; }
public KTransferMemory(long Position, long Size)
{
this.Position = Position;
this.Size = Size;
}
}
}

View file

@ -0,0 +1,22 @@
namespace Ryujinx.HLE.HOS.Kernel
{
static class KernelErr
{
public const int InvalidSize = 101;
public const int InvalidAddress = 102;
public const int OutOfMemory = 104;
public const int NoAccessPerm = 106;
public const int InvalidPermission = 108;
public const int InvalidMemRange = 110;
public const int InvalidPriority = 112;
public const int InvalidCoreId = 113;
public const int InvalidHandle = 114;
public const int InvalidMaskValue = 116;
public const int Timeout = 117;
public const int Canceled = 118;
public const int CountOutOfRange = 119;
public const int InvalidEnumValue = 120;
public const int InvalidThread = 122;
public const int InvalidState = 125;
}
}

View file

@ -0,0 +1,22 @@
using System;
namespace Ryujinx.HLE.HOS.Kernel
{
[Flags]
enum MemoryAttribute : byte
{
None = 0,
Mask = 0xff,
Borrowed = 1 << 0,
IpcMapped = 1 << 1,
DeviceMapped = 1 << 2,
Uncached = 1 << 3,
IpcAndDeviceMapped = IpcMapped | DeviceMapped,
BorrowedAndIpcMapped = Borrowed | IpcMapped,
DeviceMappedAndUncached = DeviceMapped | Uncached
}
}

View file

@ -0,0 +1,18 @@
using System;
namespace Ryujinx.HLE.HOS.Kernel
{
[Flags]
enum MemoryPermission : byte
{
None = 0,
Mask = 0xff,
Read = 1 << 0,
Write = 1 << 1,
Execute = 1 << 2,
ReadAndWrite = Read | Write,
ReadAndExecute = Read | Execute
}
}

View file

@ -0,0 +1,49 @@
using System;
namespace Ryujinx.HLE.HOS.Kernel
{
[Flags]
enum MemoryState : uint
{
Unmapped = 0x00000000,
Io = 0x00002001,
Normal = 0x00042002,
CodeStatic = 0x00DC7E03,
CodeMutable = 0x03FEBD04,
Heap = 0x037EBD05,
SharedMemory = 0x00402006,
ModCodeStatic = 0x00DD7E08,
ModCodeMutable = 0x03FFBD09,
IpcBuffer0 = 0x005C3C0A,
MappedMemory = 0x005C3C0B,
ThreadLocal = 0x0040200C,
TransferMemoryIsolated = 0x015C3C0D,
TransferMemory = 0x005C380E,
ProcessMemory = 0x0040380F,
Reserved = 0x00000010,
IpcBuffer1 = 0x005C3811,
IpcBuffer3 = 0x004C2812,
KernelStack = 0x00002013,
CodeReadOnly = 0x00402214,
CodeWritable = 0x00402015,
Mask = 0xffffffff,
PermissionChangeAllowed = 1 << 8,
ForceReadWritableByDebugSyscalls = 1 << 9,
IpcSendAllowedType0 = 1 << 10,
IpcSendAllowedType3 = 1 << 11,
IpcSendAllowedType1 = 1 << 12,
ProcessPermissionChangeAllowed = 1 << 14,
MapAllowed = 1 << 15,
UnmapProcessCodeMemoryAllowed = 1 << 16,
TransferMemoryAllowed = 1 << 17,
QueryPhysicalAddressAllowed = 1 << 18,
MapDeviceAllowed = 1 << 19,
MapDeviceAlignedAllowed = 1 << 20,
IpcBufferAllowed = 1 << 21,
IsPoolAllocated = 1 << 22,
MapProcessAllowed = 1 << 23,
AttributeChangeAllowed = 1 << 24,
CodeMemoryAllowed = 1 << 25
}
}

View file

@ -0,0 +1,19 @@
namespace Ryujinx.HLE.HOS.Kernel
{
static class NsTimeConverter
{
public static int GetTimeMs(ulong Ns)
{
ulong Ms = Ns / 1_000_000;
if (Ms < int.MaxValue)
{
return (int)Ms;
}
else
{
return int.MaxValue;
}
}
}
}

View file

@ -0,0 +1,48 @@
using System;
using System.Threading;
namespace Ryujinx.HLE.HOS.Kernel
{
class SchedulerThread : IDisposable
{
public KThread Thread { get; private set; }
public SchedulerThread Next { get; set; }
public bool IsActive { get; set; }
public AutoResetEvent WaitSync { get; private set; }
public ManualResetEvent WaitActivity { get; private set; }
public AutoResetEvent WaitSched { get; private set; }
public SchedulerThread(KThread Thread)
{
this.Thread = Thread;
IsActive = true;
WaitSync = new AutoResetEvent(false);
WaitActivity = new ManualResetEvent(true);
WaitSched = new AutoResetEvent(false);
}
public void Dispose()
{
Dispose(true);
}
protected virtual void Dispose(bool Disposing)
{
if (Disposing)
{
WaitSync.Dispose();
WaitActivity.Dispose();
WaitSched.Dispose();
}
}
}
}

View file

@ -0,0 +1,123 @@
using ChocolArm64.Events;
using ChocolArm64.Memory;
using ChocolArm64.State;
using Ryujinx.HLE.Logging;
using System;
using System.Collections.Concurrent;
using System.Collections.Generic;
using System.Threading;
namespace Ryujinx.HLE.HOS.Kernel
{
partial class SvcHandler
{
private delegate void SvcFunc(AThreadState ThreadState);
private Dictionary<int, SvcFunc> SvcFuncs;
private Switch Device;
private Process Process;
private AMemory Memory;
private ConcurrentDictionary<KThread, AutoResetEvent> SyncWaits;
private const uint SelfThreadHandle = 0xffff8000;
private const uint SelfProcessHandle = 0xffff8001;
private static Random Rng;
public SvcHandler(Switch Device, Process Process)
{
SvcFuncs = new Dictionary<int, SvcFunc>()
{
{ 0x01, SvcSetHeapSize },
{ 0x03, SvcSetMemoryAttribute },
{ 0x04, SvcMapMemory },
{ 0x05, SvcUnmapMemory },
{ 0x06, SvcQueryMemory },
{ 0x07, SvcExitProcess },
{ 0x08, SvcCreateThread },
{ 0x09, SvcStartThread },
{ 0x0a, SvcExitThread },
{ 0x0b, SvcSleepThread },
{ 0x0c, SvcGetThreadPriority },
{ 0x0d, SvcSetThreadPriority },
{ 0x0e, SvcGetThreadCoreMask },
{ 0x0f, SvcSetThreadCoreMask },
{ 0x10, SvcGetCurrentProcessorNumber },
{ 0x12, SvcClearEvent },
{ 0x13, SvcMapSharedMemory },
{ 0x14, SvcUnmapSharedMemory },
{ 0x15, SvcCreateTransferMemory },
{ 0x16, SvcCloseHandle },
{ 0x17, SvcResetSignal },
{ 0x18, SvcWaitSynchronization },
{ 0x19, SvcCancelSynchronization },
{ 0x1a, SvcArbitrateLock },
{ 0x1b, SvcArbitrateUnlock },
{ 0x1c, SvcWaitProcessWideKeyAtomic },
{ 0x1d, SvcSignalProcessWideKey },
{ 0x1e, SvcGetSystemTick },
{ 0x1f, SvcConnectToNamedPort },
{ 0x21, SvcSendSyncRequest },
{ 0x22, SvcSendSyncRequestWithUserBuffer },
{ 0x25, SvcGetThreadId },
{ 0x26, SvcBreak },
{ 0x27, SvcOutputDebugString },
{ 0x29, SvcGetInfo },
{ 0x2c, SvcMapPhysicalMemory },
{ 0x2d, SvcUnmapPhysicalMemory },
{ 0x32, SvcSetThreadActivity },
{ 0x33, SvcGetThreadContext3 },
{ 0x34, SvcWaitForAddress }
};
this.Device = Device;
this.Process = Process;
this.Memory = Process.Memory;
SyncWaits = new ConcurrentDictionary<KThread, AutoResetEvent>();
}
static SvcHandler()
{
Rng = new Random();
}
public void SvcCall(object sender, AInstExceptionEventArgs e)
{
AThreadState ThreadState = (AThreadState)sender;
Process.GetThread(ThreadState.Tpidr).LastPc = e.Position;
if (SvcFuncs.TryGetValue(e.Id, out SvcFunc Func))
{
Device.Log.PrintDebug(LogClass.KernelSvc, $"{Func.Method.Name} called.");
Func(ThreadState);
Process.Scheduler.Reschedule(Process.GetThread(ThreadState.Tpidr));
Device.Log.PrintDebug(LogClass.KernelSvc, $"{Func.Method.Name} ended.");
}
else
{
Process.PrintStackTrace(ThreadState);
throw new NotImplementedException($"0x{e.Id:x4}");
}
}
private KThread GetThread(long Tpidr, int Handle)
{
if ((uint)Handle == SelfThreadHandle)
{
return Process.GetThread(Tpidr);
}
else
{
return Process.HandleTable.GetData<KThread>(Handle);
}
}
}
}

View file

@ -0,0 +1,577 @@
using ChocolArm64.State;
using Ryujinx.HLE.Logging;
using static Ryujinx.HLE.HOS.ErrorCode;
namespace Ryujinx.HLE.HOS.Kernel
{
partial class SvcHandler
{
private void SvcSetHeapSize(AThreadState ThreadState)
{
long Size = (long)ThreadState.X1;
if ((Size & 0x1fffff) != 0 || Size != (uint)Size)
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Heap size 0x{Size:x16} is not aligned!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidSize);
return;
}
long Result = Process.MemoryManager.TrySetHeapSize(Size, out long Position);
ThreadState.X0 = (ulong)Result;
if (Result == 0)
{
ThreadState.X1 = (ulong)Position;
}
else
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Operation failed with error 0x{Result:x}!");
}
}
private void SvcSetMemoryAttribute(AThreadState ThreadState)
{
long Position = (long)ThreadState.X0;
long Size = (long)ThreadState.X1;
if (!PageAligned(Position))
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Address 0x{Position:x16} is not page aligned!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidAddress);
return;
}
if (!PageAligned(Size) || Size == 0)
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Size 0x{Size:x16} is not page aligned or is zero!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidSize);
return;
}
MemoryAttribute AttributeMask = (MemoryAttribute)ThreadState.X2;
MemoryAttribute AttributeValue = (MemoryAttribute)ThreadState.X3;
MemoryAttribute Attributes = AttributeMask | AttributeValue;
if (Attributes != AttributeMask ||
(Attributes | MemoryAttribute.Uncached) != MemoryAttribute.Uncached)
{
Device.Log.PrintWarning(LogClass.KernelSvc, "Invalid memory attributes!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidMaskValue);
return;
}
long Result = Process.MemoryManager.SetMemoryAttribute(
Position,
Size,
AttributeMask,
AttributeValue);
if (Result != 0)
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Operation failed with error 0x{Result:x}!");
}
else
{
Memory.StopObservingRegion(Position, Size);
}
ThreadState.X0 = (ulong)Result;
}
private void SvcMapMemory(AThreadState ThreadState)
{
long Dst = (long)ThreadState.X0;
long Src = (long)ThreadState.X1;
long Size = (long)ThreadState.X2;
if (!PageAligned(Src | Dst))
{
Device.Log.PrintWarning(LogClass.KernelSvc, "Addresses are not page aligned!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidAddress);
return;
}
if (!PageAligned(Size) || Size == 0)
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Size 0x{Size:x16} is not page aligned or is zero!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidSize);
return;
}
if ((ulong)(Src + Size) <= (ulong)Src || (ulong)(Dst + Size) <= (ulong)Dst)
{
Device.Log.PrintWarning(LogClass.KernelSvc, "Addresses outside of range!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.NoAccessPerm);
return;
}
if (!InsideAddrSpace(Src, Size))
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Src address 0x{Src:x16} out of range!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.NoAccessPerm);
return;
}
if (!InsideNewMapRegion(Dst, Size))
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Dst address 0x{Dst:x16} out of range!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidMemRange);
return;
}
long Result = Process.MemoryManager.Map(Src, Dst, Size);
if (Result != 0)
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Operation failed with error 0x{Result:x}!");
}
ThreadState.X0 = (ulong)Result;
}
private void SvcUnmapMemory(AThreadState ThreadState)
{
long Dst = (long)ThreadState.X0;
long Src = (long)ThreadState.X1;
long Size = (long)ThreadState.X2;
if (!PageAligned(Src | Dst))
{
Device.Log.PrintWarning(LogClass.KernelSvc, "Addresses are not page aligned!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidAddress);
return;
}
if (!PageAligned(Size) || Size == 0)
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Size 0x{Size:x16} is not page aligned or is zero!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidSize);
return;
}
if ((ulong)(Src + Size) <= (ulong)Src || (ulong)(Dst + Size) <= (ulong)Dst)
{
Device.Log.PrintWarning(LogClass.KernelSvc, "Addresses outside of range!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.NoAccessPerm);
return;
}
if (!InsideAddrSpace(Src, Size))
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Src address 0x{Src:x16} out of range!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.NoAccessPerm);
return;
}
if (!InsideNewMapRegion(Dst, Size))
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Dst address 0x{Dst:x16} out of range!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidMemRange);
return;
}
long Result = Process.MemoryManager.Unmap(Src, Dst, Size);
if (Result != 0)
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Operation failed with error 0x{Result:x}!");
}
ThreadState.X0 = (ulong)Result;
}
private void SvcQueryMemory(AThreadState ThreadState)
{
long InfoPtr = (long)ThreadState.X0;
long Position = (long)ThreadState.X2;
KMemoryInfo BlkInfo = Process.MemoryManager.QueryMemory(Position);
Memory.WriteInt64(InfoPtr + 0x00, BlkInfo.Position);
Memory.WriteInt64(InfoPtr + 0x08, BlkInfo.Size);
Memory.WriteInt32(InfoPtr + 0x10, (int)BlkInfo.State & 0xff);
Memory.WriteInt32(InfoPtr + 0x14, (int)BlkInfo.Attribute);
Memory.WriteInt32(InfoPtr + 0x18, (int)BlkInfo.Permission);
Memory.WriteInt32(InfoPtr + 0x1c, BlkInfo.IpcRefCount);
Memory.WriteInt32(InfoPtr + 0x20, BlkInfo.DeviceRefCount);
Memory.WriteInt32(InfoPtr + 0x24, 0);
ThreadState.X0 = 0;
ThreadState.X1 = 0;
}
private void SvcMapSharedMemory(AThreadState ThreadState)
{
int Handle = (int)ThreadState.X0;
long Position = (long)ThreadState.X1;
long Size = (long)ThreadState.X2;
if (!PageAligned(Position))
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Address 0x{Position:x16} is not page aligned!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidAddress);
return;
}
if (!PageAligned(Size) || Size == 0)
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Size 0x{Size:x16} is not page aligned or is zero!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidSize);
return;
}
if ((ulong)(Position + Size) <= (ulong)Position)
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Invalid region address 0x{Position:x16} / size 0x{Size:x16}!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.NoAccessPerm);
return;
}
MemoryPermission Permission = (MemoryPermission)ThreadState.X3;
if ((Permission | MemoryPermission.Write) != MemoryPermission.ReadAndWrite)
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Invalid permission {Permission}!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidPermission);
return;
}
KSharedMemory SharedMemory = Process.HandleTable.GetData<KSharedMemory>(Handle);
if (SharedMemory == null)
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Invalid shared memory handle 0x{Handle:x8}!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidHandle);
return;
}
if (!InsideAddrSpace(Position, Size) || InsideMapRegion(Position, Size) || InsideHeapRegion(Position, Size))
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Address 0x{Position:x16} out of range!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.NoAccessPerm);
return;
}
if (SharedMemory.Size != Size)
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Size 0x{Size:x16} does not match shared memory size 0x{SharedMemory.Size:16}!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidSize);
return;
}
long Result = Process.MemoryManager.MapSharedMemory(SharedMemory, Permission, Position);
if (Result != 0)
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Operation failed with error 0x{Result:x}!");
}
ThreadState.X0 = (ulong)Result;
}
private void SvcUnmapSharedMemory(AThreadState ThreadState)
{
int Handle = (int)ThreadState.X0;
long Position = (long)ThreadState.X1;
long Size = (long)ThreadState.X2;
if (!PageAligned(Position))
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Address 0x{Position:x16} is not page aligned!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidAddress);
return;
}
if (!PageAligned(Size) || Size == 0)
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Size 0x{Size:x16} is not page aligned or is zero!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidSize);
return;
}
if ((ulong)(Position + Size) <= (ulong)Position)
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Invalid region address 0x{Position:x16} / size 0x{Size:x16}!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.NoAccessPerm);
return;
}
KSharedMemory SharedMemory = Process.HandleTable.GetData<KSharedMemory>(Handle);
if (SharedMemory == null)
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Invalid shared memory handle 0x{Handle:x8}!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidHandle);
return;
}
if (!InsideAddrSpace(Position, Size) || InsideMapRegion(Position, Size) || InsideHeapRegion(Position, Size))
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Address 0x{Position:x16} out of range!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.NoAccessPerm);
return;
}
long Result = Process.MemoryManager.UnmapSharedMemory(Position, Size);
if (Result != 0)
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Operation failed with error 0x{Result:x}!");
}
ThreadState.X0 = (ulong)Result;
}
private void SvcCreateTransferMemory(AThreadState ThreadState)
{
long Position = (long)ThreadState.X1;
long Size = (long)ThreadState.X2;
if (!PageAligned(Position))
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Address 0x{Position:x16} is not page aligned!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidAddress);
return;
}
if (!PageAligned(Size) || Size == 0)
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Size 0x{Size:x16} is not page aligned or is zero!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidAddress);
return;
}
if ((ulong)(Position + Size) <= (ulong)Position)
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Invalid region address 0x{Position:x16} / size 0x{Size:x16}!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.NoAccessPerm);
return;
}
MemoryPermission Permission = (MemoryPermission)ThreadState.X3;
if (Permission > MemoryPermission.ReadAndWrite || Permission == MemoryPermission.Write)
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Invalid permission {Permission}!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidPermission);
return;
}
Process.MemoryManager.ReserveTransferMemory(Position, Size, Permission);
KTransferMemory TransferMemory = new KTransferMemory(Position, Size);
int Handle = Process.HandleTable.OpenHandle(TransferMemory);
ThreadState.X0 = 0;
ThreadState.X1 = (ulong)Handle;
}
private void SvcMapPhysicalMemory(AThreadState ThreadState)
{
long Position = (long)ThreadState.X0;
long Size = (long)ThreadState.X1;
if (!PageAligned(Position))
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Address 0x{Position:x16} is not page aligned!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidAddress);
return;
}
if (!PageAligned(Size) || Size == 0)
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Size 0x{Size:x16} is not page aligned or is zero!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidSize);
return;
}
if ((ulong)(Position + Size) <= (ulong)Position)
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Invalid region address 0x{Position:x16} / size 0x{Size:x16}!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.NoAccessPerm);
return;
}
if (!InsideAddrSpace(Position, Size))
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Invalid address {Position:x16}!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.NoAccessPerm);
return;
}
long Result = Process.MemoryManager.MapPhysicalMemory(Position, Size);
if (Result != 0)
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Operation failed with error 0x{Result:x}!");
}
ThreadState.X0 = (ulong)Result;
}
private void SvcUnmapPhysicalMemory(AThreadState ThreadState)
{
long Position = (long)ThreadState.X0;
long Size = (long)ThreadState.X1;
if (!PageAligned(Position))
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Address 0x{Position:x16} is not page aligned!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidAddress);
return;
}
if (!PageAligned(Size) || Size == 0)
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Size 0x{Size:x16} is not page aligned or is zero!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidSize);
return;
}
if ((ulong)(Position + Size) <= (ulong)Position)
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Invalid region address 0x{Position:x16} / size 0x{Size:x16}!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.NoAccessPerm);
return;
}
if (!InsideAddrSpace(Position, Size))
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Invalid address {Position:x16}!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.NoAccessPerm);
return;
}
long Result = Process.MemoryManager.UnmapPhysicalMemory(Position, Size);
if (Result != 0)
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Operation failed with error 0x{Result:x}!");
}
ThreadState.X0 = (ulong)Result;
}
private static bool PageAligned(long Position)
{
return (Position & (KMemoryManager.PageSize - 1)) == 0;
}
private bool InsideAddrSpace(long Position, long Size)
{
ulong Start = (ulong)Position;
ulong End = (ulong)Size + Start;
return Start >= (ulong)Process.MemoryManager.AddrSpaceStart &&
End < (ulong)Process.MemoryManager.AddrSpaceEnd;
}
private bool InsideMapRegion(long Position, long Size)
{
ulong Start = (ulong)Position;
ulong End = (ulong)Size + Start;
return Start >= (ulong)Process.MemoryManager.MapRegionStart &&
End < (ulong)Process.MemoryManager.MapRegionEnd;
}
private bool InsideHeapRegion(long Position, long Size)
{
ulong Start = (ulong)Position;
ulong End = (ulong)Size + Start;
return Start >= (ulong)Process.MemoryManager.HeapRegionStart &&
End < (ulong)Process.MemoryManager.HeapRegionEnd;
}
private bool InsideNewMapRegion(long Position, long Size)
{
ulong Start = (ulong)Position;
ulong End = (ulong)Size + Start;
return Start >= (ulong)Process.MemoryManager.NewMapRegionStart &&
End < (ulong)Process.MemoryManager.NewMapRegionEnd;
}
}
}

View file

@ -0,0 +1,373 @@
using ChocolArm64.Memory;
using ChocolArm64.State;
using Ryujinx.HLE.Exceptions;
using Ryujinx.HLE.HOS.Ipc;
using Ryujinx.HLE.HOS.Services;
using Ryujinx.HLE.Logging;
using System;
using System.Threading;
using static Ryujinx.HLE.HOS.ErrorCode;
namespace Ryujinx.HLE.HOS.Kernel
{
partial class SvcHandler
{
private const int AllowedCpuIdBitmask = 0b1111;
private const bool EnableProcessDebugging = false;
private void SvcExitProcess(AThreadState ThreadState)
{
Device.System.ExitProcess(Process.ProcessId);
}
private void SvcClearEvent(AThreadState ThreadState)
{
int Handle = (int)ThreadState.X0;
//TODO: Implement events.
ThreadState.X0 = 0;
}
private void SvcCloseHandle(AThreadState ThreadState)
{
int Handle = (int)ThreadState.X0;
object Obj = Process.HandleTable.CloseHandle(Handle);
if (Obj == null)
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Invalid handle 0x{Handle:x8}!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidHandle);
return;
}
if (Obj is KSession Session)
{
Session.Dispose();
}
else if (Obj is KTransferMemory TransferMemory)
{
Process.MemoryManager.ResetTransferMemory(
TransferMemory.Position,
TransferMemory.Size);
}
ThreadState.X0 = 0;
}
private void SvcResetSignal(AThreadState ThreadState)
{
int Handle = (int)ThreadState.X0;
KEvent Event = Process.HandleTable.GetData<KEvent>(Handle);
if (Event != null)
{
Event.WaitEvent.Reset();
ThreadState.X0 = 0;
}
else
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Invalid event handle 0x{Handle:x8}!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidHandle);
}
}
private void SvcWaitSynchronization(AThreadState ThreadState)
{
long HandlesPtr = (long)ThreadState.X1;
int HandlesCount = (int)ThreadState.X2;
ulong Timeout = ThreadState.X3;
Device.Log.PrintDebug(LogClass.KernelSvc,
"HandlesPtr = 0x" + HandlesPtr .ToString("x16") + ", " +
"HandlesCount = 0x" + HandlesCount.ToString("x8") + ", " +
"Timeout = 0x" + Timeout .ToString("x16"));
if ((uint)HandlesCount > 0x40)
{
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.CountOutOfRange);
return;
}
KThread CurrThread = Process.GetThread(ThreadState.Tpidr);
WaitHandle[] Handles = new WaitHandle[HandlesCount + 1];
for (int Index = 0; Index < HandlesCount; Index++)
{
int Handle = Memory.ReadInt32(HandlesPtr + Index * 4);
KSynchronizationObject SyncObj = Process.HandleTable.GetData<KSynchronizationObject>(Handle);
if (SyncObj == null)
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Invalid handle 0x{Handle:x8}!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidHandle);
return;
}
Handles[Index] = SyncObj.WaitEvent;
}
using (AutoResetEvent WaitEvent = new AutoResetEvent(false))
{
if (!SyncWaits.TryAdd(CurrThread, WaitEvent))
{
throw new InvalidOperationException();
}
Handles[HandlesCount] = WaitEvent;
Process.Scheduler.Suspend(CurrThread);
int HandleIndex;
ulong Result = 0;
if (Timeout != ulong.MaxValue)
{
HandleIndex = WaitHandle.WaitAny(Handles, NsTimeConverter.GetTimeMs(Timeout));
}
else
{
HandleIndex = WaitHandle.WaitAny(Handles);
}
if (HandleIndex == WaitHandle.WaitTimeout)
{
Result = MakeError(ErrorModule.Kernel, KernelErr.Timeout);
}
else if (HandleIndex == HandlesCount)
{
Result = MakeError(ErrorModule.Kernel, KernelErr.Canceled);
}
SyncWaits.TryRemove(CurrThread, out _);
Process.Scheduler.Resume(CurrThread);
ThreadState.X0 = Result;
if (Result == 0)
{
ThreadState.X1 = (ulong)HandleIndex;
}
}
}
private void SvcCancelSynchronization(AThreadState ThreadState)
{
int ThreadHandle = (int)ThreadState.X0;
KThread Thread = GetThread(ThreadState.Tpidr, ThreadHandle);
if (Thread == null)
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Invalid thread handle 0x{ThreadHandle:x8}!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidHandle);
return;
}
if (SyncWaits.TryRemove(Thread, out AutoResetEvent WaitEvent))
{
WaitEvent.Set();
}
ThreadState.X0 = 0;
}
private void SvcGetSystemTick(AThreadState ThreadState)
{
ThreadState.X0 = ThreadState.CntpctEl0;
}
private void SvcConnectToNamedPort(AThreadState ThreadState)
{
long StackPtr = (long)ThreadState.X0;
long NamePtr = (long)ThreadState.X1;
string Name = AMemoryHelper.ReadAsciiString(Memory, NamePtr, 8);
//TODO: Validate that app has perms to access the service, and that the service
//actually exists, return error codes otherwise.
KSession Session = new KSession(ServiceFactory.MakeService(Name), Name);
ulong Handle = (ulong)Process.HandleTable.OpenHandle(Session);
ThreadState.X0 = 0;
ThreadState.X1 = Handle;
}
private void SvcSendSyncRequest(AThreadState ThreadState)
{
SendSyncRequest(ThreadState, ThreadState.Tpidr, 0x100, (int)ThreadState.X0);
}
private void SvcSendSyncRequestWithUserBuffer(AThreadState ThreadState)
{
SendSyncRequest(
ThreadState,
(long)ThreadState.X0,
(long)ThreadState.X1,
(int)ThreadState.X2);
}
private void SendSyncRequest(AThreadState ThreadState, long CmdPtr, long Size, int Handle)
{
KThread CurrThread = Process.GetThread(ThreadState.Tpidr);
byte[] CmdData = Memory.ReadBytes(CmdPtr, Size);
KSession Session = Process.HandleTable.GetData<KSession>(Handle);
if (Session != null)
{
Process.Scheduler.Suspend(CurrThread);
IpcMessage Cmd = new IpcMessage(CmdData, CmdPtr);
long Result = IpcHandler.IpcCall(Device, Process, Memory, Session, Cmd, CmdPtr);
Thread.Yield();
Process.Scheduler.Resume(CurrThread);
ThreadState.X0 = (ulong)Result;
}
else
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Invalid session handle 0x{Handle:x8}!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidHandle);
}
}
private void SvcBreak(AThreadState ThreadState)
{
long Reason = (long)ThreadState.X0;
long Unknown = (long)ThreadState.X1;
long Info = (long)ThreadState.X2;
Process.PrintStackTrace(ThreadState);
throw new GuestBrokeExecutionException();
}
private void SvcOutputDebugString(AThreadState ThreadState)
{
long Position = (long)ThreadState.X0;
long Size = (long)ThreadState.X1;
string Str = AMemoryHelper.ReadAsciiString(Memory, Position, Size);
Device.Log.PrintWarning(LogClass.KernelSvc, Str);
ThreadState.X0 = 0;
}
private void SvcGetInfo(AThreadState ThreadState)
{
long StackPtr = (long)ThreadState.X0;
int InfoType = (int)ThreadState.X1;
long Handle = (long)ThreadState.X2;
int InfoId = (int)ThreadState.X3;
//Fail for info not available on older Kernel versions.
if (InfoType == 18 ||
InfoType == 19 ||
InfoType == 20)
{
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidEnumValue);
return;
}
switch (InfoType)
{
case 0:
ThreadState.X1 = AllowedCpuIdBitmask;
break;
case 2:
ThreadState.X1 = (ulong)Process.MemoryManager.MapRegionStart;
break;
case 3:
ThreadState.X1 = (ulong)Process.MemoryManager.MapRegionEnd -
(ulong)Process.MemoryManager.MapRegionStart;
break;
case 4:
ThreadState.X1 = (ulong)Process.MemoryManager.HeapRegionStart;
break;
case 5:
ThreadState.X1 = (ulong)Process.MemoryManager.HeapRegionEnd -
(ulong)Process.MemoryManager.HeapRegionStart;
break;
case 6:
ThreadState.X1 = (ulong)Process.Device.Memory.Allocator.TotalAvailableSize;
break;
case 7:
ThreadState.X1 = (ulong)Process.Device.Memory.Allocator.TotalUsedSize;
break;
case 8:
ThreadState.X1 = EnableProcessDebugging ? 1 : 0;
break;
case 11:
ThreadState.X1 = (ulong)Rng.Next() + ((ulong)Rng.Next() << 32);
break;
case 12:
ThreadState.X1 = (ulong)Process.MemoryManager.AddrSpaceStart;
break;
case 13:
ThreadState.X1 = (ulong)Process.MemoryManager.AddrSpaceEnd -
(ulong)Process.MemoryManager.AddrSpaceStart;
break;
case 14:
ThreadState.X1 = (ulong)Process.MemoryManager.NewMapRegionStart;
break;
case 15:
ThreadState.X1 = (ulong)Process.MemoryManager.NewMapRegionEnd -
(ulong)Process.MemoryManager.NewMapRegionStart;
break;
case 16:
ThreadState.X1 = (ulong)(Process.MetaData?.SystemResourceSize ?? 0);
break;
case 17:
ThreadState.X1 = (ulong)Process.MemoryManager.PersonalMmHeapUsage;
break;
default:
Process.PrintStackTrace(ThreadState);
throw new NotImplementedException($"SvcGetInfo: {InfoType} 0x{Handle:x8} {InfoId}");
}
ThreadState.X0 = 0;
}
}
}

View file

@ -0,0 +1,385 @@
using ChocolArm64.State;
using Ryujinx.HLE.Logging;
using System.Threading;
using static Ryujinx.HLE.HOS.ErrorCode;
namespace Ryujinx.HLE.HOS.Kernel
{
partial class SvcHandler
{
private void SvcCreateThread(AThreadState ThreadState)
{
long EntryPoint = (long)ThreadState.X1;
long ArgsPtr = (long)ThreadState.X2;
long StackTop = (long)ThreadState.X3;
int Priority = (int)ThreadState.X4;
int ProcessorId = (int)ThreadState.X5;
if ((uint)Priority > 0x3f)
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Invalid priority 0x{Priority:x8}!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidPriority);
return;
}
if (ProcessorId == -2)
{
//TODO: Get this value from the NPDM file.
ProcessorId = 0;
}
else if ((uint)ProcessorId > 3)
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Invalid core id 0x{ProcessorId:x8}!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidCoreId);
return;
}
int Handle = Process.MakeThread(
EntryPoint,
StackTop,
ArgsPtr,
Priority,
ProcessorId);
ThreadState.X0 = 0;
ThreadState.X1 = (ulong)Handle;
}
private void SvcStartThread(AThreadState ThreadState)
{
int Handle = (int)ThreadState.X0;
KThread NewThread = Process.HandleTable.GetData<KThread>(Handle);
if (NewThread != null)
{
Process.Scheduler.StartThread(NewThread);
Process.Scheduler.SetReschedule(NewThread.ProcessorId);
ThreadState.X0 = 0;
}
else
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Invalid thread handle 0x{Handle:x8}!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidHandle);
}
}
private void SvcExitThread(AThreadState ThreadState)
{
KThread CurrThread = Process.GetThread(ThreadState.Tpidr);
CurrThread.Thread.StopExecution();
}
private void SvcSleepThread(AThreadState ThreadState)
{
ulong TimeoutNs = ThreadState.X0;
Device.Log.PrintDebug(LogClass.KernelSvc, "Timeout = 0x" + TimeoutNs.ToString("x16"));
KThread CurrThread = Process.GetThread(ThreadState.Tpidr);
if (TimeoutNs == 0 || TimeoutNs == ulong.MaxValue)
{
Process.Scheduler.Yield(CurrThread);
}
else
{
Process.Scheduler.Suspend(CurrThread);
Thread.Sleep(NsTimeConverter.GetTimeMs(TimeoutNs));
Process.Scheduler.Resume(CurrThread);
}
}
private void SvcGetThreadPriority(AThreadState ThreadState)
{
int Handle = (int)ThreadState.X1;
KThread Thread = GetThread(ThreadState.Tpidr, Handle);
if (Thread != null)
{
ThreadState.X0 = 0;
ThreadState.X1 = (ulong)Thread.ActualPriority;
}
else
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Invalid thread handle 0x{Handle:x8}!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidHandle);
}
}
private void SvcSetThreadPriority(AThreadState ThreadState)
{
int Handle = (int)ThreadState.X0;
int Priority = (int)ThreadState.X1;
Device.Log.PrintDebug(LogClass.KernelSvc,
"Handle = 0x" + Handle .ToString("x8") + ", " +
"Priority = 0x" + Priority.ToString("x8"));
KThread Thread = GetThread(ThreadState.Tpidr, Handle);
if (Thread != null)
{
Thread.SetPriority(Priority);
ThreadState.X0 = 0;
}
else
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Invalid thread handle 0x{Handle:x8}!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidHandle);
}
}
private void SvcGetThreadCoreMask(AThreadState ThreadState)
{
int Handle = (int)ThreadState.X2;
Device.Log.PrintDebug(LogClass.KernelSvc, "Handle = 0x" + Handle.ToString("x8"));
KThread Thread = GetThread(ThreadState.Tpidr, Handle);
if (Thread != null)
{
ThreadState.X0 = 0;
ThreadState.X1 = (ulong)Thread.IdealCore;
ThreadState.X2 = (ulong)Thread.CoreMask;
}
else
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Invalid thread handle 0x{Handle:x8}!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidHandle);
}
}
private void SvcSetThreadCoreMask(AThreadState ThreadState)
{
int Handle = (int)ThreadState.X0;
int IdealCore = (int)ThreadState.X1;
long CoreMask = (long)ThreadState.X2;
Device.Log.PrintDebug(LogClass.KernelSvc,
"Handle = 0x" + Handle .ToString("x8") + ", " +
"IdealCore = 0x" + IdealCore.ToString("x8") + ", " +
"CoreMask = 0x" + CoreMask .ToString("x16"));
KThread Thread = GetThread(ThreadState.Tpidr, Handle);
if (IdealCore == -2)
{
//TODO: Get this value from the NPDM file.
IdealCore = 0;
CoreMask = 1 << IdealCore;
}
else
{
if ((uint)IdealCore > 3)
{
if ((IdealCore | 2) != -1)
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Invalid core id 0x{IdealCore:x8}!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidCoreId);
return;
}
}
else if ((CoreMask & (1 << IdealCore)) == 0)
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Invalid core mask 0x{CoreMask:x8}!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidMaskValue);
return;
}
}
if (Thread == null)
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Invalid thread handle 0x{Handle:x8}!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidHandle);
return;
}
//-1 is used as "don't care", so the IdealCore value is ignored.
//-2 is used as "use NPDM default core id" (handled above).
//-3 is used as "don't update", the old IdealCore value is kept.
if (IdealCore == -3 && (CoreMask & (1 << Thread.IdealCore)) == 0)
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Invalid core mask 0x{CoreMask:x8}!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidMaskValue);
return;
}
Process.Scheduler.ChangeCore(Thread, IdealCore, (int)CoreMask);
ThreadState.X0 = 0;
}
private void SvcGetCurrentProcessorNumber(AThreadState ThreadState)
{
ThreadState.X0 = (ulong)Process.GetThread(ThreadState.Tpidr).ActualCore;
}
private void SvcGetThreadId(AThreadState ThreadState)
{
int Handle = (int)ThreadState.X1;
KThread Thread = GetThread(ThreadState.Tpidr, Handle);
if (Thread != null)
{
ThreadState.X0 = 0;
ThreadState.X1 = (ulong)Thread.ThreadId;
}
else
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Invalid thread handle 0x{Handle:x8}!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidHandle);
}
}
private void SvcSetThreadActivity(AThreadState ThreadState)
{
int Handle = (int)ThreadState.X0;
bool Active = (int)ThreadState.X1 == 0;
KThread Thread = Process.HandleTable.GetData<KThread>(Handle);
if (Thread != null)
{
Process.Scheduler.SetThreadActivity(Thread, Active);
ThreadState.X0 = 0;
}
else
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Invalid thread handle 0x{Handle:x8}!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidHandle);
}
}
private void SvcGetThreadContext3(AThreadState ThreadState)
{
long Position = (long)ThreadState.X0;
int Handle = (int)ThreadState.X1;
KThread Thread = Process.HandleTable.GetData<KThread>(Handle);
if (Thread == null)
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Invalid thread handle 0x{Handle:x8}!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidHandle);
return;
}
if (Process.GetThread(ThreadState.Tpidr) == Thread)
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Thread handle 0x{Handle:x8} is current thread!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidThread);
return;
}
Memory.WriteUInt64(Position + 0x0, ThreadState.X0);
Memory.WriteUInt64(Position + 0x8, ThreadState.X1);
Memory.WriteUInt64(Position + 0x10, ThreadState.X2);
Memory.WriteUInt64(Position + 0x18, ThreadState.X3);
Memory.WriteUInt64(Position + 0x20, ThreadState.X4);
Memory.WriteUInt64(Position + 0x28, ThreadState.X5);
Memory.WriteUInt64(Position + 0x30, ThreadState.X6);
Memory.WriteUInt64(Position + 0x38, ThreadState.X7);
Memory.WriteUInt64(Position + 0x40, ThreadState.X8);
Memory.WriteUInt64(Position + 0x48, ThreadState.X9);
Memory.WriteUInt64(Position + 0x50, ThreadState.X10);
Memory.WriteUInt64(Position + 0x58, ThreadState.X11);
Memory.WriteUInt64(Position + 0x60, ThreadState.X12);
Memory.WriteUInt64(Position + 0x68, ThreadState.X13);
Memory.WriteUInt64(Position + 0x70, ThreadState.X14);
Memory.WriteUInt64(Position + 0x78, ThreadState.X15);
Memory.WriteUInt64(Position + 0x80, ThreadState.X16);
Memory.WriteUInt64(Position + 0x88, ThreadState.X17);
Memory.WriteUInt64(Position + 0x90, ThreadState.X18);
Memory.WriteUInt64(Position + 0x98, ThreadState.X19);
Memory.WriteUInt64(Position + 0xa0, ThreadState.X20);
Memory.WriteUInt64(Position + 0xa8, ThreadState.X21);
Memory.WriteUInt64(Position + 0xb0, ThreadState.X22);
Memory.WriteUInt64(Position + 0xb8, ThreadState.X23);
Memory.WriteUInt64(Position + 0xc0, ThreadState.X24);
Memory.WriteUInt64(Position + 0xc8, ThreadState.X25);
Memory.WriteUInt64(Position + 0xd0, ThreadState.X26);
Memory.WriteUInt64(Position + 0xd8, ThreadState.X27);
Memory.WriteUInt64(Position + 0xe0, ThreadState.X28);
Memory.WriteUInt64(Position + 0xe8, ThreadState.X29);
Memory.WriteUInt64(Position + 0xf0, ThreadState.X30);
Memory.WriteUInt64(Position + 0xf8, ThreadState.X31);
Memory.WriteInt64(Position + 0x100, Thread.LastPc);
Memory.WriteUInt64(Position + 0x108, (ulong)ThreadState.Psr);
Memory.WriteVector128(Position + 0x110, ThreadState.V0);
Memory.WriteVector128(Position + 0x120, ThreadState.V1);
Memory.WriteVector128(Position + 0x130, ThreadState.V2);
Memory.WriteVector128(Position + 0x140, ThreadState.V3);
Memory.WriteVector128(Position + 0x150, ThreadState.V4);
Memory.WriteVector128(Position + 0x160, ThreadState.V5);
Memory.WriteVector128(Position + 0x170, ThreadState.V6);
Memory.WriteVector128(Position + 0x180, ThreadState.V7);
Memory.WriteVector128(Position + 0x190, ThreadState.V8);
Memory.WriteVector128(Position + 0x1a0, ThreadState.V9);
Memory.WriteVector128(Position + 0x1b0, ThreadState.V10);
Memory.WriteVector128(Position + 0x1c0, ThreadState.V11);
Memory.WriteVector128(Position + 0x1d0, ThreadState.V12);
Memory.WriteVector128(Position + 0x1e0, ThreadState.V13);
Memory.WriteVector128(Position + 0x1f0, ThreadState.V14);
Memory.WriteVector128(Position + 0x200, ThreadState.V15);
Memory.WriteVector128(Position + 0x210, ThreadState.V16);
Memory.WriteVector128(Position + 0x220, ThreadState.V17);
Memory.WriteVector128(Position + 0x230, ThreadState.V18);
Memory.WriteVector128(Position + 0x240, ThreadState.V19);
Memory.WriteVector128(Position + 0x250, ThreadState.V20);
Memory.WriteVector128(Position + 0x260, ThreadState.V21);
Memory.WriteVector128(Position + 0x270, ThreadState.V22);
Memory.WriteVector128(Position + 0x280, ThreadState.V23);
Memory.WriteVector128(Position + 0x290, ThreadState.V24);
Memory.WriteVector128(Position + 0x2a0, ThreadState.V25);
Memory.WriteVector128(Position + 0x2b0, ThreadState.V26);
Memory.WriteVector128(Position + 0x2c0, ThreadState.V27);
Memory.WriteVector128(Position + 0x2d0, ThreadState.V28);
Memory.WriteVector128(Position + 0x2e0, ThreadState.V29);
Memory.WriteVector128(Position + 0x2f0, ThreadState.V30);
Memory.WriteVector128(Position + 0x300, ThreadState.V31);
Memory.WriteInt32(Position + 0x310, ThreadState.Fpcr);
Memory.WriteInt32(Position + 0x314, ThreadState.Fpsr);
Memory.WriteInt64(Position + 0x318, ThreadState.Tpidr);
ThreadState.X0 = 0;
}
}
}

View file

@ -0,0 +1,523 @@
using ChocolArm64.State;
using Ryujinx.HLE.Logging;
using System;
using static Ryujinx.HLE.HOS.ErrorCode;
namespace Ryujinx.HLE.HOS.Kernel
{
partial class SvcHandler
{
private const int MutexHasListenersMask = 0x40000000;
private void SvcArbitrateLock(AThreadState ThreadState)
{
int OwnerThreadHandle = (int)ThreadState.X0;
long MutexAddress = (long)ThreadState.X1;
int WaitThreadHandle = (int)ThreadState.X2;
Device.Log.PrintDebug(LogClass.KernelSvc,
"OwnerThreadHandle = 0x" + OwnerThreadHandle.ToString("x8") + ", " +
"MutexAddress = 0x" + MutexAddress .ToString("x16") + ", " +
"WaitThreadHandle = 0x" + WaitThreadHandle .ToString("x8"));
if (IsPointingInsideKernel(MutexAddress))
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Invalid mutex address 0x{MutexAddress:x16}!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.NoAccessPerm);
return;
}
if (IsAddressNotWordAligned(MutexAddress))
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Unaligned mutex address 0x{MutexAddress:x16}!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidAddress);
return;
}
KThread OwnerThread = Process.HandleTable.GetData<KThread>(OwnerThreadHandle);
if (OwnerThread == null)
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Invalid owner thread handle 0x{OwnerThreadHandle:x8}!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidHandle);
return;
}
KThread WaitThread = Process.HandleTable.GetData<KThread>(WaitThreadHandle);
if (WaitThread == null)
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Invalid requesting thread handle 0x{WaitThreadHandle:x8}!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidHandle);
return;
}
KThread CurrThread = Process.GetThread(ThreadState.Tpidr);
MutexLock(CurrThread, WaitThread, OwnerThreadHandle, WaitThreadHandle, MutexAddress);
ThreadState.X0 = 0;
}
private void SvcArbitrateUnlock(AThreadState ThreadState)
{
long MutexAddress = (long)ThreadState.X0;
Device.Log.PrintDebug(LogClass.KernelSvc, "MutexAddress = 0x" + MutexAddress.ToString("x16"));
if (IsPointingInsideKernel(MutexAddress))
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Invalid mutex address 0x{MutexAddress:x16}!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.NoAccessPerm);
return;
}
if (IsAddressNotWordAligned(MutexAddress))
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Unaligned mutex address 0x{MutexAddress:x16}!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidAddress);
return;
}
MutexUnlock(Process.GetThread(ThreadState.Tpidr), MutexAddress);
ThreadState.X0 = 0;
}
private void SvcWaitProcessWideKeyAtomic(AThreadState ThreadState)
{
long MutexAddress = (long)ThreadState.X0;
long CondVarAddress = (long)ThreadState.X1;
int ThreadHandle = (int)ThreadState.X2;
ulong Timeout = ThreadState.X3;
Device.Log.PrintDebug(LogClass.KernelSvc,
"MutexAddress = 0x" + MutexAddress .ToString("x16") + ", " +
"CondVarAddress = 0x" + CondVarAddress.ToString("x16") + ", " +
"ThreadHandle = 0x" + ThreadHandle .ToString("x8") + ", " +
"Timeout = 0x" + Timeout .ToString("x16"));
if (IsPointingInsideKernel(MutexAddress))
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Invalid mutex address 0x{MutexAddress:x16}!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.NoAccessPerm);
return;
}
if (IsAddressNotWordAligned(MutexAddress))
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Unaligned mutex address 0x{MutexAddress:x16}!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidAddress);
return;
}
KThread Thread = Process.HandleTable.GetData<KThread>(ThreadHandle);
if (Thread == null)
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Invalid thread handle 0x{ThreadHandle:x8}!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidHandle);
return;
}
KThread WaitThread = Process.GetThread(ThreadState.Tpidr);
if (!CondVarWait(WaitThread, ThreadHandle, MutexAddress, CondVarAddress, Timeout))
{
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.Timeout);
return;
}
ThreadState.X0 = 0;
}
private void SvcSignalProcessWideKey(AThreadState ThreadState)
{
long CondVarAddress = (long)ThreadState.X0;
int Count = (int)ThreadState.X1;
Device.Log.PrintDebug(LogClass.KernelSvc,
"CondVarAddress = 0x" + CondVarAddress.ToString("x16") + ", " +
"Count = 0x" + Count .ToString("x8"));
KThread CurrThread = Process.GetThread(ThreadState.Tpidr);
CondVarSignal(ThreadState, CurrThread, CondVarAddress, Count);
ThreadState.X0 = 0;
}
private void MutexLock(
KThread CurrThread,
KThread WaitThread,
int OwnerThreadHandle,
int WaitThreadHandle,
long MutexAddress)
{
lock (Process.ThreadSyncLock)
{
int MutexValue = Memory.ReadInt32(MutexAddress);
Device.Log.PrintDebug(LogClass.KernelSvc, "MutexValue = 0x" + MutexValue.ToString("x8"));
if (MutexValue != (OwnerThreadHandle | MutexHasListenersMask))
{
return;
}
CurrThread.WaitHandle = WaitThreadHandle;
CurrThread.MutexAddress = MutexAddress;
InsertWaitingMutexThreadUnsafe(OwnerThreadHandle, WaitThread);
}
Device.Log.PrintDebug(LogClass.KernelSvc, "Entering wait state...");
Process.Scheduler.EnterWait(CurrThread);
}
private void SvcWaitForAddress(AThreadState ThreadState)
{
long Address = (long)ThreadState.X0;
ArbitrationType Type = (ArbitrationType)ThreadState.X1;
int Value = (int)ThreadState.X2;
ulong Timeout = ThreadState.X3;
Device.Log.PrintDebug(LogClass.KernelSvc,
"Address = 0x" + Address.ToString("x16") + ", " +
"ArbitrationType = 0x" + Type .ToString() + ", " +
"Value = 0x" + Value .ToString("x8") + ", " +
"Timeout = 0x" + Timeout.ToString("x16"));
if (IsPointingInsideKernel(Address))
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Invalid address 0x{Address:x16}!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.NoAccessPerm);
return;
}
if (IsAddressNotWordAligned(Address))
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Unaligned address 0x{Address:x16}!");
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidAddress);
return;
}
switch (Type)
{
case ArbitrationType.WaitIfLessThan:
ThreadState.X0 = AddressArbiter.WaitForAddressIfLessThan(Process, ThreadState, Memory, Address, Value, Timeout, false);
break;
case ArbitrationType.DecrementAndWaitIfLessThan:
ThreadState.X0 = AddressArbiter.WaitForAddressIfLessThan(Process, ThreadState, Memory, Address, Value, Timeout, true);
break;
case ArbitrationType.WaitIfEqual:
ThreadState.X0 = AddressArbiter.WaitForAddressIfEqual(Process, ThreadState, Memory, Address, Value, Timeout);
break;
default:
ThreadState.X0 = MakeError(ErrorModule.Kernel, KernelErr.InvalidEnumValue);
break;
}
}
private void MutexUnlock(KThread CurrThread, long MutexAddress)
{
lock (Process.ThreadSyncLock)
{
//This is the new thread that will now own the mutex.
//If no threads are waiting for the lock, then it should be null.
(KThread OwnerThread, int Count) = PopMutexThreadUnsafe(CurrThread, MutexAddress);
if (OwnerThread == CurrThread)
{
throw new InvalidOperationException();
}
if (OwnerThread != null)
{
//Remove all waiting mutex from the old owner,
//and insert then on the new owner.
UpdateMutexOwnerUnsafe(CurrThread, OwnerThread, MutexAddress);
CurrThread.UpdatePriority();
int HasListeners = Count >= 2 ? MutexHasListenersMask : 0;
Memory.WriteInt32ToSharedAddr(MutexAddress, HasListeners | OwnerThread.WaitHandle);
OwnerThread.WaitHandle = 0;
OwnerThread.MutexAddress = 0;
OwnerThread.CondVarAddress = 0;
OwnerThread.MutexOwner = null;
OwnerThread.UpdatePriority();
Process.Scheduler.WakeUp(OwnerThread);
Device.Log.PrintDebug(LogClass.KernelSvc, "Gave mutex to thread id " + OwnerThread.ThreadId + "!");
}
else
{
Memory.WriteInt32ToSharedAddr(MutexAddress, 0);
Device.Log.PrintDebug(LogClass.KernelSvc, "No threads waiting mutex!");
}
}
}
private bool CondVarWait(
KThread WaitThread,
int WaitThreadHandle,
long MutexAddress,
long CondVarAddress,
ulong Timeout)
{
WaitThread.WaitHandle = WaitThreadHandle;
WaitThread.MutexAddress = MutexAddress;
WaitThread.CondVarAddress = CondVarAddress;
lock (Process.ThreadSyncLock)
{
MutexUnlock(WaitThread, MutexAddress);
WaitThread.CondVarSignaled = false;
Process.ThreadArbiterList.Add(WaitThread);
}
Device.Log.PrintDebug(LogClass.KernelSvc, "Entering wait state...");
if (Timeout != ulong.MaxValue)
{
Process.Scheduler.EnterWait(WaitThread, NsTimeConverter.GetTimeMs(Timeout));
lock (Process.ThreadSyncLock)
{
if (!WaitThread.CondVarSignaled || WaitThread.MutexOwner != null)
{
if (WaitThread.MutexOwner != null)
{
WaitThread.MutexOwner.MutexWaiters.Remove(WaitThread);
WaitThread.MutexOwner.UpdatePriority();
WaitThread.MutexOwner = null;
}
Process.ThreadArbiterList.Remove(WaitThread);
Device.Log.PrintDebug(LogClass.KernelSvc, "Timed out...");
return false;
}
}
}
else
{
Process.Scheduler.EnterWait(WaitThread);
}
return true;
}
private void CondVarSignal(
AThreadState ThreadState,
KThread CurrThread,
long CondVarAddress,
int Count)
{
lock (Process.ThreadSyncLock)
{
while (Count == -1 || Count-- > 0)
{
KThread WaitThread = PopCondVarThreadUnsafe(CondVarAddress);
if (WaitThread == null)
{
Device.Log.PrintDebug(LogClass.KernelSvc, "No more threads to wake up!");
break;
}
WaitThread.CondVarSignaled = true;
long MutexAddress = WaitThread.MutexAddress;
Memory.SetExclusive(ThreadState, MutexAddress);
int MutexValue = Memory.ReadInt32(MutexAddress);
while (MutexValue != 0)
{
if (Memory.TestExclusive(ThreadState, MutexAddress))
{
//Wait until the lock is released.
InsertWaitingMutexThreadUnsafe(MutexValue & ~MutexHasListenersMask, WaitThread);
Memory.WriteInt32(MutexAddress, MutexValue | MutexHasListenersMask);
Memory.ClearExclusiveForStore(ThreadState);
break;
}
Memory.SetExclusive(ThreadState, MutexAddress);
MutexValue = Memory.ReadInt32(MutexAddress);
}
Device.Log.PrintDebug(LogClass.KernelSvc, "MutexValue = 0x" + MutexValue.ToString("x8"));
if (MutexValue == 0)
{
//Give the lock to this thread.
Memory.WriteInt32ToSharedAddr(MutexAddress, WaitThread.WaitHandle);
WaitThread.WaitHandle = 0;
WaitThread.MutexAddress = 0;
WaitThread.CondVarAddress = 0;
WaitThread.MutexOwner?.UpdatePriority();
WaitThread.MutexOwner = null;
Process.Scheduler.WakeUp(WaitThread);
}
}
}
}
private void UpdateMutexOwnerUnsafe(KThread CurrThread, KThread NewOwner, long MutexAddress)
{
//Go through all threads waiting for the mutex,
//and update the MutexOwner field to point to the new owner.
for (int Index = 0; Index < CurrThread.MutexWaiters.Count; Index++)
{
KThread Thread = CurrThread.MutexWaiters[Index];
if (Thread.MutexAddress == MutexAddress)
{
CurrThread.MutexWaiters.RemoveAt(Index--);
InsertWaitingMutexThreadUnsafe(NewOwner, Thread);
}
}
}
private void InsertWaitingMutexThreadUnsafe(int OwnerThreadHandle, KThread WaitThread)
{
KThread OwnerThread = Process.HandleTable.GetData<KThread>(OwnerThreadHandle);
if (OwnerThread == null)
{
Device.Log.PrintWarning(LogClass.KernelSvc, $"Invalid thread handle 0x{OwnerThreadHandle:x8}!");
return;
}
InsertWaitingMutexThreadUnsafe(OwnerThread, WaitThread);
}
private void InsertWaitingMutexThreadUnsafe(KThread OwnerThread, KThread WaitThread)
{
WaitThread.MutexOwner = OwnerThread;
if (!OwnerThread.MutexWaiters.Contains(WaitThread))
{
OwnerThread.MutexWaiters.Add(WaitThread);
OwnerThread.UpdatePriority();
}
}
private (KThread, int) PopMutexThreadUnsafe(KThread OwnerThread, long MutexAddress)
{
int Count = 0;
KThread WakeThread = null;
foreach (KThread Thread in OwnerThread.MutexWaiters)
{
if (Thread.MutexAddress != MutexAddress)
{
continue;
}
if (WakeThread == null || Thread.ActualPriority < WakeThread.ActualPriority)
{
WakeThread = Thread;
}
Count++;
}
if (WakeThread != null)
{
OwnerThread.MutexWaiters.Remove(WakeThread);
}
return (WakeThread, Count);
}
private KThread PopCondVarThreadUnsafe(long CondVarAddress)
{
KThread WakeThread = null;
foreach (KThread Thread in Process.ThreadArbiterList)
{
if (Thread.CondVarAddress != CondVarAddress)
{
continue;
}
if (WakeThread == null || Thread.ActualPriority < WakeThread.ActualPriority)
{
WakeThread = Thread;
}
}
if (WakeThread != null)
{
Process.ThreadArbiterList.Remove(WakeThread);
}
return WakeThread;
}
private bool IsPointingInsideKernel(long Address)
{
return ((ulong)Address + 0x1000000000) < 0xffffff000;
}
private bool IsAddressNotWordAligned(long Address)
{
return (Address & 3) != 0;
}
}
}

View file

@ -0,0 +1,158 @@
namespace Ryujinx.HLE.HOS.Kernel
{
class ThreadQueue
{
private const int LowestPriority = 0x3f;
private SchedulerThread Head;
private object ListLock;
public ThreadQueue()
{
ListLock = new object();
}
public void Push(SchedulerThread Wait)
{
lock (ListLock)
{
//Ensure that we're not creating circular references
//by adding a thread that is already on the list.
if (HasThread(Wait))
{
return;
}
if (Head == null || Head.Thread.ActualPriority >= Wait.Thread.ActualPriority)
{
Wait.Next = Head;
Head = Wait;
return;
}
SchedulerThread Curr = Head;
while (Curr.Next != null)
{
if (Curr.Next.Thread.ActualPriority >= Wait.Thread.ActualPriority)
{
break;
}
Curr = Curr.Next;
}
Wait.Next = Curr.Next;
Curr.Next = Wait;
}
}
public SchedulerThread Pop(int Core, int MinPriority = LowestPriority)
{
lock (ListLock)
{
int CoreMask = 1 << Core;
SchedulerThread Prev = null;
SchedulerThread Curr = Head;
while (Curr != null)
{
KThread Thread = Curr.Thread;
if (Thread.ActualPriority <= MinPriority && (Thread.CoreMask & CoreMask) != 0)
{
if (Prev != null)
{
Prev.Next = Curr.Next;
}
else
{
Head = Head.Next;
}
break;
}
Prev = Curr;
Curr = Curr.Next;
}
return Curr;
}
}
public bool Remove(SchedulerThread Thread)
{
lock (ListLock)
{
if (Head == null)
{
return false;
}
else if (Head == Thread)
{
Head = Head.Next;
return true;
}
SchedulerThread Prev = Head;
SchedulerThread Curr = Head.Next;
while (Curr != null)
{
if (Curr == Thread)
{
Prev.Next = Curr.Next;
return true;
}
Prev = Curr;
Curr = Curr.Next;
}
return false;
}
}
public bool Resort(SchedulerThread Thread)
{
lock (ListLock)
{
if (Remove(Thread))
{
Push(Thread);
return true;
}
return false;
}
}
public bool HasThread(SchedulerThread Thread)
{
lock (ListLock)
{
SchedulerThread Curr = Head;
while (Curr != null)
{
if (Curr == Thread)
{
return true;
}
Curr = Curr.Next;
}
return false;
}
}
}
}