ryujinx/Ryujinx.Graphics/VDec/VideoDecoder.cs
gdkchan a731ab3a2a Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project

* Refactoring around the old IRAdapter, now renamed to PreAllocator

* Optimize the LowestBitSet method

* Add CLZ support and fix CLS implementation

* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks

* Implement the ByteSwap IR instruction, and some refactoring on the assembler

* Implement the DivideUI IR instruction and fix 64-bits IDIV

* Correct constant operand type on CSINC

* Move division instructions implementation to InstEmitDiv

* Fix destination type for the ConditionalSelect IR instruction

* Implement UMULH and SMULH, with new IR instructions

* Fix some issues with shift instructions

* Fix constant types for BFM instructions

* Fix up new tests using the new V128 struct

* Update tests

* Move DIV tests to a separate file

* Add support for calls, and some instructions that depends on them

* Start adding support for SIMD & FP types, along with some of the related ARM instructions

* Fix some typos and the divide instruction with FP operands

* Fix wrong method call on Clz_V

* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes

* Implement SIMD logical instructions and more misc. fixes

* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations

* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes

* Implement SIMD shift instruction and fix Dup_V

* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table

* Fix check with tolerance on tester

* Implement FP & SIMD comparison instructions, and some fixes

* Update FCVT (Scalar) encoding on the table to support the Half-float variants

* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes

* Use old memory access methods, made a start on SIMD memory insts support, some fixes

* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes

* Fix arguments count with struct return values, other fixes

* More instructions

* Misc. fixes and integrate LDj3SNuD fixes

* Update tests

* Add a faster linear scan allocator, unwinding support on windows, and other changes

* Update Ryujinx.HLE

* Update Ryujinx.Graphics

* Fix V128 return pointer passing, RCX is clobbered

* Update Ryujinx.Tests

* Update ITimeZoneService

* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks

* Use generic GetFunctionPointerForDelegate method and other tweaks

* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics

* Remove some unused code on the assembler

* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler

* Add hardware capability detection

* Fix regression on Sha1h and revert Fcm** changes

* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator

* Fix silly mistake introduced on last commit on CpuId

* Generate inline stack probes when the stack allocation is too large

* Initial support for the System-V ABI

* Support multiple destination operands

* Fix SSE2 VectorInsert8 path, and other fixes

* Change placement of XMM callee save and restore code to match other compilers

* Rename Dest to Destination and Inst to Instruction

* Fix a regression related to calls and the V128 type

* Add an extra space on comments to match code style

* Some refactoring

* Fix vector insert FP32 SSE2 path

* Port over the ARM32 instructions

* Avoid memory protection races on JIT Cache

* Another fix on VectorInsert FP32 (thanks to LDj3SNuD

* Float operands don't need to use the same register when VEX is supported

* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks

* Some nits, small improvements on the pre allocator

* CpuThreadState is gone

* Allow changing CPU emulators with a config entry

* Add runtime identifiers on the ARMeilleure project

* Allow switching between CPUs through a config entry (pt. 2)

* Change win10-x64 to win-x64 on projects

* Update the Ryujinx project to use ARMeilleure

* Ensure that the selected register is valid on the hybrid allocator

* Allow exiting on returns to 0 (should fix test regression)

* Remove register assignments for most used variables on the hybrid allocator

* Do not use fixed registers as spill temp

* Add missing namespace and remove unneeded using

* Address PR feedback

* Fix types, etc

* Enable AssumeStrictAbiCompliance by default

* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 21:56:22 +03:00

281 lines
12 KiB
C#

using ARMeilleure.Memory;
using Ryujinx.Graphics.Gal;
using Ryujinx.Graphics.Memory;
using Ryujinx.Graphics.Texture;
using Ryujinx.Graphics.Vic;
using System;
namespace Ryujinx.Graphics.VDec
{
unsafe class VideoDecoder
{
private NvGpu _gpu;
private H264Decoder _h264Decoder;
private Vp9Decoder _vp9Decoder;
private VideoCodec _currentVideoCodec;
private long _decoderContextAddress;
private long _frameDataAddress;
private long _vpxCurrLumaAddress;
private long _vpxRef0LumaAddress;
private long _vpxRef1LumaAddress;
private long _vpxRef2LumaAddress;
private long _vpxCurrChromaAddress;
private long _vpxRef0ChromaAddress;
private long _vpxRef1ChromaAddress;
private long _vpxRef2ChromaAddress;
private long _vpxProbTablesAddress;
public VideoDecoder(NvGpu gpu)
{
_gpu = gpu;
_h264Decoder = new H264Decoder();
_vp9Decoder = new Vp9Decoder();
}
public void Process(NvGpuVmm vmm, int methodOffset, int[] arguments)
{
VideoDecoderMeth method = (VideoDecoderMeth)methodOffset;
switch (method)
{
case VideoDecoderMeth.SetVideoCodec: SetVideoCodec (vmm, arguments); break;
case VideoDecoderMeth.Execute: Execute (vmm, arguments); break;
case VideoDecoderMeth.SetDecoderCtxAddr: SetDecoderCtxAddr (vmm, arguments); break;
case VideoDecoderMeth.SetFrameDataAddr: SetFrameDataAddr (vmm, arguments); break;
case VideoDecoderMeth.SetVpxCurrLumaAddr: SetVpxCurrLumaAddr (vmm, arguments); break;
case VideoDecoderMeth.SetVpxRef0LumaAddr: SetVpxRef0LumaAddr (vmm, arguments); break;
case VideoDecoderMeth.SetVpxRef1LumaAddr: SetVpxRef1LumaAddr (vmm, arguments); break;
case VideoDecoderMeth.SetVpxRef2LumaAddr: SetVpxRef2LumaAddr (vmm, arguments); break;
case VideoDecoderMeth.SetVpxCurrChromaAddr: SetVpxCurrChromaAddr(vmm, arguments); break;
case VideoDecoderMeth.SetVpxRef0ChromaAddr: SetVpxRef0ChromaAddr(vmm, arguments); break;
case VideoDecoderMeth.SetVpxRef1ChromaAddr: SetVpxRef1ChromaAddr(vmm, arguments); break;
case VideoDecoderMeth.SetVpxRef2ChromaAddr: SetVpxRef2ChromaAddr(vmm, arguments); break;
case VideoDecoderMeth.SetVpxProbTablesAddr: SetVpxProbTablesAddr(vmm, arguments); break;
}
}
private void SetVideoCodec(NvGpuVmm vmm, int[] arguments)
{
_currentVideoCodec = (VideoCodec)arguments[0];
}
private void Execute(NvGpuVmm vmm, int[] arguments)
{
if (_currentVideoCodec == VideoCodec.H264)
{
int frameDataSize = vmm.ReadInt32(_decoderContextAddress + 0x48);
H264ParameterSets Params = MemoryHelper.Read<H264ParameterSets>(vmm.Memory, vmm.GetPhysicalAddress(_decoderContextAddress + 0x58));
H264Matrices matrices = new H264Matrices()
{
ScalingMatrix4 = vmm.ReadBytes(_decoderContextAddress + 0x1c0, 6 * 16),
ScalingMatrix8 = vmm.ReadBytes(_decoderContextAddress + 0x220, 2 * 64)
};
byte[] frameData = vmm.ReadBytes(_frameDataAddress, frameDataSize);
_h264Decoder.Decode(Params, matrices, frameData);
}
else if (_currentVideoCodec == VideoCodec.Vp9)
{
int frameDataSize = vmm.ReadInt32(_decoderContextAddress + 0x30);
Vp9FrameKeys keys = new Vp9FrameKeys()
{
CurrKey = vmm.GetPhysicalAddress(_vpxCurrLumaAddress),
Ref0Key = vmm.GetPhysicalAddress(_vpxRef0LumaAddress),
Ref1Key = vmm.GetPhysicalAddress(_vpxRef1LumaAddress),
Ref2Key = vmm.GetPhysicalAddress(_vpxRef2LumaAddress)
};
Vp9FrameHeader header = MemoryHelper.Read<Vp9FrameHeader>(vmm.Memory, vmm.GetPhysicalAddress(_decoderContextAddress + 0x48));
Vp9ProbabilityTables probs = new Vp9ProbabilityTables()
{
SegmentationTreeProbs = vmm.ReadBytes(_vpxProbTablesAddress + 0x387, 0x7),
SegmentationPredProbs = vmm.ReadBytes(_vpxProbTablesAddress + 0x38e, 0x3),
Tx8x8Probs = vmm.ReadBytes(_vpxProbTablesAddress + 0x470, 0x2),
Tx16x16Probs = vmm.ReadBytes(_vpxProbTablesAddress + 0x472, 0x4),
Tx32x32Probs = vmm.ReadBytes(_vpxProbTablesAddress + 0x476, 0x6),
CoefProbs = vmm.ReadBytes(_vpxProbTablesAddress + 0x5a0, 0x900),
SkipProbs = vmm.ReadBytes(_vpxProbTablesAddress + 0x537, 0x3),
InterModeProbs = vmm.ReadBytes(_vpxProbTablesAddress + 0x400, 0x1c),
InterpFilterProbs = vmm.ReadBytes(_vpxProbTablesAddress + 0x52a, 0x8),
IsInterProbs = vmm.ReadBytes(_vpxProbTablesAddress + 0x41c, 0x4),
CompModeProbs = vmm.ReadBytes(_vpxProbTablesAddress + 0x532, 0x5),
SingleRefProbs = vmm.ReadBytes(_vpxProbTablesAddress + 0x580, 0xa),
CompRefProbs = vmm.ReadBytes(_vpxProbTablesAddress + 0x58a, 0x5),
YModeProbs0 = vmm.ReadBytes(_vpxProbTablesAddress + 0x480, 0x20),
YModeProbs1 = vmm.ReadBytes(_vpxProbTablesAddress + 0x47c, 0x4),
PartitionProbs = vmm.ReadBytes(_vpxProbTablesAddress + 0x4e0, 0x40),
MvJointProbs = vmm.ReadBytes(_vpxProbTablesAddress + 0x53b, 0x3),
MvSignProbs = vmm.ReadBytes(_vpxProbTablesAddress + 0x53e, 0x3),
MvClassProbs = vmm.ReadBytes(_vpxProbTablesAddress + 0x54c, 0x14),
MvClass0BitProbs = vmm.ReadBytes(_vpxProbTablesAddress + 0x540, 0x3),
MvBitsProbs = vmm.ReadBytes(_vpxProbTablesAddress + 0x56c, 0x14),
MvClass0FrProbs = vmm.ReadBytes(_vpxProbTablesAddress + 0x560, 0xc),
MvFrProbs = vmm.ReadBytes(_vpxProbTablesAddress + 0x542, 0x6),
MvClass0HpProbs = vmm.ReadBytes(_vpxProbTablesAddress + 0x548, 0x2),
MvHpProbs = vmm.ReadBytes(_vpxProbTablesAddress + 0x54a, 0x2)
};
byte[] frameData = vmm.ReadBytes(_frameDataAddress, frameDataSize);
_vp9Decoder.Decode(keys, header, probs, frameData);
}
else
{
ThrowUnimplementedCodec();
}
}
private void SetDecoderCtxAddr(NvGpuVmm vmm, int[] arguments)
{
_decoderContextAddress = GetAddress(arguments);
}
private void SetFrameDataAddr(NvGpuVmm vmm, int[] arguments)
{
_frameDataAddress = GetAddress(arguments);
}
private void SetVpxCurrLumaAddr(NvGpuVmm vmm, int[] arguments)
{
_vpxCurrLumaAddress = GetAddress(arguments);
}
private void SetVpxRef0LumaAddr(NvGpuVmm vmm, int[] arguments)
{
_vpxRef0LumaAddress = GetAddress(arguments);
}
private void SetVpxRef1LumaAddr(NvGpuVmm vmm, int[] arguments)
{
_vpxRef1LumaAddress = GetAddress(arguments);
}
private void SetVpxRef2LumaAddr(NvGpuVmm vmm, int[] arguments)
{
_vpxRef2LumaAddress = GetAddress(arguments);
}
private void SetVpxCurrChromaAddr(NvGpuVmm vmm, int[] arguments)
{
_vpxCurrChromaAddress = GetAddress(arguments);
}
private void SetVpxRef0ChromaAddr(NvGpuVmm vmm, int[] arguments)
{
_vpxRef0ChromaAddress = GetAddress(arguments);
}
private void SetVpxRef1ChromaAddr(NvGpuVmm vmm, int[] arguments)
{
_vpxRef1ChromaAddress = GetAddress(arguments);
}
private void SetVpxRef2ChromaAddr(NvGpuVmm vmm, int[] arguments)
{
_vpxRef2ChromaAddress = GetAddress(arguments);
}
private void SetVpxProbTablesAddr(NvGpuVmm vmm, int[] arguments)
{
_vpxProbTablesAddress = GetAddress(arguments);
}
private static long GetAddress(int[] arguments)
{
return (long)(uint)arguments[0] << 8;
}
internal void CopyPlanes(NvGpuVmm vmm, SurfaceOutputConfig outputConfig)
{
switch (outputConfig.PixelFormat)
{
case SurfacePixelFormat.Rgba8: CopyPlanesRgba8 (vmm, outputConfig); break;
case SurfacePixelFormat.Yuv420P: CopyPlanesYuv420P(vmm, outputConfig); break;
default: ThrowUnimplementedPixelFormat(outputConfig.PixelFormat); break;
}
}
private void CopyPlanesRgba8(NvGpuVmm vmm, SurfaceOutputConfig outputConfig)
{
FFmpegFrame frame = FFmpegWrapper.GetFrameRgba();
if ((frame.Width | frame.Height) == 0)
{
return;
}
GalImage image = new GalImage(
outputConfig.SurfaceWidth,
outputConfig.SurfaceHeight, 1, 1, 1,
outputConfig.GobBlockHeight, 1,
GalMemoryLayout.BlockLinear,
GalImageFormat.Rgba8 | GalImageFormat.Unorm,
GalTextureTarget.TwoD);
ImageUtils.WriteTexture(vmm, image, vmm.GetPhysicalAddress(outputConfig.SurfaceLumaAddress), frame.Data);
}
private void CopyPlanesYuv420P(NvGpuVmm vmm, SurfaceOutputConfig outputConfig)
{
FFmpegFrame frame = FFmpegWrapper.GetFrame();
if ((frame.Width | frame.Height) == 0)
{
return;
}
int halfSrcWidth = frame.Width / 2;
int halfWidth = frame.Width / 2;
int halfHeight = frame.Height / 2;
int alignedWidth = (outputConfig.SurfaceWidth + 0xff) & ~0xff;
for (int y = 0; y < frame.Height; y++)
{
int src = y * frame.Width;
int dst = y * alignedWidth;
int size = frame.Width;
for (int offset = 0; offset < size; offset++)
{
vmm.WriteByte(outputConfig.SurfaceLumaAddress + dst + offset, *(frame.LumaPtr + src + offset));
}
}
// Copy chroma data from both channels with interleaving.
for (int y = 0; y < halfHeight; y++)
{
int src = y * halfSrcWidth;
int dst = y * alignedWidth;
for (int x = 0; x < halfWidth; x++)
{
vmm.WriteByte(outputConfig.SurfaceChromaUAddress + dst + x * 2 + 0, *(frame.ChromaBPtr + src + x));
vmm.WriteByte(outputConfig.SurfaceChromaUAddress + dst + x * 2 + 1, *(frame.ChromaRPtr + src + x));
}
}
}
private void ThrowUnimplementedCodec()
{
throw new NotImplementedException("Codec \"" + _currentVideoCodec + "\" is not supported!");
}
private void ThrowUnimplementedPixelFormat(SurfacePixelFormat pixelFormat)
{
throw new NotImplementedException("Pixel format \"" + pixelFormat + "\" is not supported!");
}
}
}