ryujinx/Ryujinx.Tests/Cpu/CpuTestSimdRegElemF.cs
gdkchan a731ab3a2a Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project

* Refactoring around the old IRAdapter, now renamed to PreAllocator

* Optimize the LowestBitSet method

* Add CLZ support and fix CLS implementation

* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks

* Implement the ByteSwap IR instruction, and some refactoring on the assembler

* Implement the DivideUI IR instruction and fix 64-bits IDIV

* Correct constant operand type on CSINC

* Move division instructions implementation to InstEmitDiv

* Fix destination type for the ConditionalSelect IR instruction

* Implement UMULH and SMULH, with new IR instructions

* Fix some issues with shift instructions

* Fix constant types for BFM instructions

* Fix up new tests using the new V128 struct

* Update tests

* Move DIV tests to a separate file

* Add support for calls, and some instructions that depends on them

* Start adding support for SIMD & FP types, along with some of the related ARM instructions

* Fix some typos and the divide instruction with FP operands

* Fix wrong method call on Clz_V

* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes

* Implement SIMD logical instructions and more misc. fixes

* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations

* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes

* Implement SIMD shift instruction and fix Dup_V

* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table

* Fix check with tolerance on tester

* Implement FP & SIMD comparison instructions, and some fixes

* Update FCVT (Scalar) encoding on the table to support the Half-float variants

* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes

* Use old memory access methods, made a start on SIMD memory insts support, some fixes

* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes

* Fix arguments count with struct return values, other fixes

* More instructions

* Misc. fixes and integrate LDj3SNuD fixes

* Update tests

* Add a faster linear scan allocator, unwinding support on windows, and other changes

* Update Ryujinx.HLE

* Update Ryujinx.Graphics

* Fix V128 return pointer passing, RCX is clobbered

* Update Ryujinx.Tests

* Update ITimeZoneService

* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks

* Use generic GetFunctionPointerForDelegate method and other tweaks

* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics

* Remove some unused code on the assembler

* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler

* Add hardware capability detection

* Fix regression on Sha1h and revert Fcm** changes

* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator

* Fix silly mistake introduced on last commit on CpuId

* Generate inline stack probes when the stack allocation is too large

* Initial support for the System-V ABI

* Support multiple destination operands

* Fix SSE2 VectorInsert8 path, and other fixes

* Change placement of XMM callee save and restore code to match other compilers

* Rename Dest to Destination and Inst to Instruction

* Fix a regression related to calls and the V128 type

* Add an extra space on comments to match code style

* Some refactoring

* Fix vector insert FP32 SSE2 path

* Port over the ARM32 instructions

* Avoid memory protection races on JIT Cache

* Another fix on VectorInsert FP32 (thanks to LDj3SNuD

* Float operands don't need to use the same register when VEX is supported

* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks

* Some nits, small improvements on the pre allocator

* CpuThreadState is gone

* Allow changing CPU emulators with a config entry

* Add runtime identifiers on the ARMeilleure project

* Allow switching between CPUs through a config entry (pt. 2)

* Change win10-x64 to win-x64 on projects

* Update the Ryujinx project to use ARMeilleure

* Ensure that the selected register is valid on the hybrid allocator

* Allow exiting on returns to 0 (should fix test regression)

* Remove register assignments for most used variables on the hybrid allocator

* Do not use fixed registers as spill temp

* Add missing namespace and remove unneeded using

* Address PR feedback

* Fix types, etc

* Enable AssumeStrictAbiCompliance by default

* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 21:56:22 +03:00

447 lines
16 KiB
C#

#define SimdRegElemF
using ARMeilleure.State;
using NUnit.Framework;
using System.Collections.Generic;
namespace Ryujinx.Tests.Cpu
{
[Category("SimdRegElemF")]
public sealed class CpuTestSimdRegElemF : CpuTest
{
#if SimdRegElemF
#region "ValueSource (Types)"
private static IEnumerable<ulong> _1S_F_()
{
yield return 0x00000000FF7FFFFFul; // -Max Normal (float.MinValue)
yield return 0x0000000080800000ul; // -Min Normal
yield return 0x00000000807FFFFFul; // -Max Subnormal
yield return 0x0000000080000001ul; // -Min Subnormal (-float.Epsilon)
yield return 0x000000007F7FFFFFul; // +Max Normal (float.MaxValue)
yield return 0x0000000000800000ul; // +Min Normal
yield return 0x00000000007FFFFFul; // +Max Subnormal
yield return 0x0000000000000001ul; // +Min Subnormal (float.Epsilon)
if (!NoZeros)
{
yield return 0x0000000080000000ul; // -Zero
yield return 0x0000000000000000ul; // +Zero
}
if (!NoInfs)
{
yield return 0x00000000FF800000ul; // -Infinity
yield return 0x000000007F800000ul; // +Infinity
}
if (!NoNaNs)
{
yield return 0x00000000FFC00000ul; // -QNaN (all zeros payload) (float.NaN)
yield return 0x00000000FFBFFFFFul; // -SNaN (all ones payload)
yield return 0x000000007FC00000ul; // +QNaN (all zeros payload) (-float.NaN) (DefaultNaN)
yield return 0x000000007FBFFFFFul; // +SNaN (all ones payload)
}
for (int cnt = 1; cnt <= RndCnt; cnt++)
{
ulong grbg = TestContext.CurrentContext.Random.NextUInt();
ulong rnd1 = GenNormalS();
ulong rnd2 = GenSubnormalS();
yield return (grbg << 32) | rnd1;
yield return (grbg << 32) | rnd2;
}
}
private static IEnumerable<ulong> _2S_F_()
{
yield return 0xFF7FFFFFFF7FFFFFul; // -Max Normal (float.MinValue)
yield return 0x8080000080800000ul; // -Min Normal
yield return 0x807FFFFF807FFFFFul; // -Max Subnormal
yield return 0x8000000180000001ul; // -Min Subnormal (-float.Epsilon)
yield return 0x7F7FFFFF7F7FFFFFul; // +Max Normal (float.MaxValue)
yield return 0x0080000000800000ul; // +Min Normal
yield return 0x007FFFFF007FFFFFul; // +Max Subnormal
yield return 0x0000000100000001ul; // +Min Subnormal (float.Epsilon)
if (!NoZeros)
{
yield return 0x8000000080000000ul; // -Zero
yield return 0x0000000000000000ul; // +Zero
}
if (!NoInfs)
{
yield return 0xFF800000FF800000ul; // -Infinity
yield return 0x7F8000007F800000ul; // +Infinity
}
if (!NoNaNs)
{
yield return 0xFFC00000FFC00000ul; // -QNaN (all zeros payload) (float.NaN)
yield return 0xFFBFFFFFFFBFFFFFul; // -SNaN (all ones payload)
yield return 0x7FC000007FC00000ul; // +QNaN (all zeros payload) (-float.NaN) (DefaultNaN)
yield return 0x7FBFFFFF7FBFFFFFul; // +SNaN (all ones payload)
}
for (int cnt = 1; cnt <= RndCnt; cnt++)
{
ulong rnd1 = GenNormalS();
ulong rnd2 = GenSubnormalS();
yield return (rnd1 << 32) | rnd1;
yield return (rnd2 << 32) | rnd2;
}
}
private static IEnumerable<ulong> _1D_F_()
{
yield return 0xFFEFFFFFFFFFFFFFul; // -Max Normal (double.MinValue)
yield return 0x8010000000000000ul; // -Min Normal
yield return 0x800FFFFFFFFFFFFFul; // -Max Subnormal
yield return 0x8000000000000001ul; // -Min Subnormal (-double.Epsilon)
yield return 0x7FEFFFFFFFFFFFFFul; // +Max Normal (double.MaxValue)
yield return 0x0010000000000000ul; // +Min Normal
yield return 0x000FFFFFFFFFFFFFul; // +Max Subnormal
yield return 0x0000000000000001ul; // +Min Subnormal (double.Epsilon)
if (!NoZeros)
{
yield return 0x8000000000000000ul; // -Zero
yield return 0x0000000000000000ul; // +Zero
}
if (!NoInfs)
{
yield return 0xFFF0000000000000ul; // -Infinity
yield return 0x7FF0000000000000ul; // +Infinity
}
if (!NoNaNs)
{
yield return 0xFFF8000000000000ul; // -QNaN (all zeros payload) (double.NaN)
yield return 0xFFF7FFFFFFFFFFFFul; // -SNaN (all ones payload)
yield return 0x7FF8000000000000ul; // +QNaN (all zeros payload) (-double.NaN) (DefaultNaN)
yield return 0x7FF7FFFFFFFFFFFFul; // +SNaN (all ones payload)
}
for (int cnt = 1; cnt <= RndCnt; cnt++)
{
ulong rnd1 = GenNormalD();
ulong rnd2 = GenSubnormalD();
yield return rnd1;
yield return rnd2;
}
}
#endregion
#region "ValueSource (Opcodes)"
private static uint[] _F_Mla_Mls_Se_S_()
{
return new uint[]
{
0x5F821020u, // FMLA S0, S1, V2.S[0]
0x5F825020u // FMLS S0, S1, V2.S[0]
};
}
private static uint[] _F_Mla_Mls_Se_D_()
{
return new uint[]
{
0x5FC21020u, // FMLA D0, D1, V2.D[0]
0x5FC25020u // FMLS D0, D1, V2.D[0]
};
}
private static uint[] _F_Mla_Mls_Ve_2S_4S_()
{
return new uint[]
{
0x0F801000u, // FMLA V0.2S, V0.2S, V0.S[0]
0x0F805000u // FMLS V0.2S, V0.2S, V0.S[0]
};
}
private static uint[] _F_Mla_Mls_Ve_2D_()
{
return new uint[]
{
0x4FC01000u, // FMLA V0.2D, V0.2D, V0.D[0]
0x4FC05000u // FMLS V0.2D, V0.2D, V0.D[0]
};
}
private static uint[] _F_Mul_Mulx_Se_S_()
{
return new uint[]
{
0x5F829020u, // FMUL S0, S1, V2.S[0]
0x7F829020u // FMULX S0, S1, V2.S[0]
};
}
private static uint[] _F_Mul_Mulx_Se_D_()
{
return new uint[]
{
0x5FC29020u, // FMUL D0, D1, V2.D[0]
0x7FC29020u // FMULX D0, D1, V2.D[0]
};
}
private static uint[] _F_Mul_Mulx_Ve_2S_4S_()
{
return new uint[]
{
0x0F809000u, // FMUL V0.2S, V0.2S, V0.S[0]
0x2F809000u // FMULX V0.2S, V0.2S, V0.S[0]
};
}
private static uint[] _F_Mul_Mulx_Ve_2D_()
{
return new uint[]
{
0x4FC09000u, // FMUL V0.2D, V0.2D, V0.D[0]
0x6FC09000u // FMULX V0.2D, V0.2D, V0.D[0]
};
}
#endregion
private const int RndCnt = 2;
private static readonly bool NoZeros = false;
private static readonly bool NoInfs = false;
private static readonly bool NoNaNs = false;
[Test, Pairwise] [Explicit] // Fused.
public void F_Mla_Mls_Se_S([ValueSource("_F_Mla_Mls_Se_S_")] uint opcodes,
[ValueSource("_1S_F_")] ulong z,
[ValueSource("_1S_F_")] ulong a,
[ValueSource("_2S_F_")] ulong b,
[Values(0u, 1u, 2u, 3u)] uint index)
{
uint h = (index >> 1) & 1;
uint l = index & 1;
opcodes |= (l << 21) | (h << 11);
V128 v0 = MakeVectorE0E1(z, z);
V128 v1 = MakeVectorE0(a);
V128 v2 = MakeVectorE0E1(b, b * h);
int rnd = (int)TestContext.CurrentContext.Random.NextUInt();
int fpcr = rnd & (1 << (int)Fpcr.Fz);
fpcr |= rnd & (1 << (int)Fpcr.Dn);
SingleOpcode(opcodes, v0: v0, v1: v1, v2: v2, fpcr: fpcr);
CompareAgainstUnicorn(Fpsr.Ioc | Fpsr.Idc, FpSkips.IfUnderflow, FpTolerances.UpToOneUlpsS);
}
[Test, Pairwise] [Explicit] // Fused.
public void F_Mla_Mls_Se_D([ValueSource("_F_Mla_Mls_Se_D_")] uint opcodes,
[ValueSource("_1D_F_")] ulong z,
[ValueSource("_1D_F_")] ulong a,
[ValueSource("_1D_F_")] ulong b,
[Values(0u, 1u)] uint index)
{
uint h = index & 1;
opcodes |= h << 11;
V128 v0 = MakeVectorE0E1(z, z);
V128 v1 = MakeVectorE0(a);
V128 v2 = MakeVectorE0E1(b, b * h);
int rnd = (int)TestContext.CurrentContext.Random.NextUInt();
int fpcr = rnd & (1 << (int)Fpcr.Fz);
fpcr |= rnd & (1 << (int)Fpcr.Dn);
SingleOpcode(opcodes, v0: v0, v1: v1, v2: v2, fpcr: fpcr);
CompareAgainstUnicorn(Fpsr.Ioc | Fpsr.Idc, FpSkips.IfUnderflow, FpTolerances.UpToOneUlpsD);
}
[Test, Pairwise] [Explicit] // Fused.
public void F_Mla_Mls_Ve_2S_4S([ValueSource("_F_Mla_Mls_Ve_2S_4S_")] uint opcodes,
[Values(0u)] uint rd,
[Values(1u, 0u)] uint rn,
[Values(2u, 0u)] uint rm,
[ValueSource("_2S_F_")] ulong z,
[ValueSource("_2S_F_")] ulong a,
[ValueSource("_2S_F_")] ulong b,
[Values(0u, 1u, 2u, 3u)] uint index,
[Values(0b0u, 0b1u)] uint q) // <2S, 4S>
{
uint h = (index >> 1) & 1;
uint l = index & 1;
opcodes |= ((rm & 31) << 16) | ((rn & 31) << 5) | ((rd & 31) << 0);
opcodes |= (l << 21) | (h << 11);
opcodes |= ((q & 1) << 30);
V128 v0 = MakeVectorE0E1(z, z);
V128 v1 = MakeVectorE0E1(a, a * q);
V128 v2 = MakeVectorE0E1(b, b * h);
int rnd = (int)TestContext.CurrentContext.Random.NextUInt();
int fpcr = rnd & (1 << (int)Fpcr.Fz);
fpcr |= rnd & (1 << (int)Fpcr.Dn);
SingleOpcode(opcodes, v0: v0, v1: v1, v2: v2, fpcr: fpcr);
CompareAgainstUnicorn(Fpsr.Ioc | Fpsr.Idc, FpSkips.IfUnderflow, FpTolerances.UpToOneUlpsS);
}
[Test, Pairwise] [Explicit] // Fused.
public void F_Mla_Mls_Ve_2D([ValueSource("_F_Mla_Mls_Ve_2D_")] uint opcodes,
[Values(0u)] uint rd,
[Values(1u, 0u)] uint rn,
[Values(2u, 0u)] uint rm,
[ValueSource("_1D_F_")] ulong z,
[ValueSource("_1D_F_")] ulong a,
[ValueSource("_1D_F_")] ulong b,
[Values(0u, 1u)] uint index)
{
uint h = index & 1;
opcodes |= ((rm & 31) << 16) | ((rn & 31) << 5) | ((rd & 31) << 0);
opcodes |= h << 11;
V128 v0 = MakeVectorE0E1(z, z);
V128 v1 = MakeVectorE0E1(a, a);
V128 v2 = MakeVectorE0E1(b, b * h);
int rnd = (int)TestContext.CurrentContext.Random.NextUInt();
int fpcr = rnd & (1 << (int)Fpcr.Fz);
fpcr |= rnd & (1 << (int)Fpcr.Dn);
SingleOpcode(opcodes, v0: v0, v1: v1, v2: v2, fpcr: fpcr);
CompareAgainstUnicorn(Fpsr.Ioc | Fpsr.Idc, FpSkips.IfUnderflow, FpTolerances.UpToOneUlpsD);
}
[Test, Pairwise] [Explicit]
public void F_Mul_Mulx_Se_S([ValueSource("_F_Mul_Mulx_Se_S_")] uint opcodes,
[ValueSource("_1S_F_")] ulong a,
[ValueSource("_2S_F_")] ulong b,
[Values(0u, 1u, 2u, 3u)] uint index)
{
uint h = (index >> 1) & 1;
uint l = index & 1;
opcodes |= (l << 21) | (h << 11);
ulong z = TestContext.CurrentContext.Random.NextULong();
V128 v0 = MakeVectorE0E1(z, z);
V128 v1 = MakeVectorE0(a);
V128 v2 = MakeVectorE0E1(b, b * h);
int rnd = (int)TestContext.CurrentContext.Random.NextUInt();
int fpcr = rnd & (1 << (int)Fpcr.Fz);
fpcr |= rnd & (1 << (int)Fpcr.Dn);
SingleOpcode(opcodes, v0: v0, v1: v1, v2: v2, fpcr: fpcr);
CompareAgainstUnicorn(fpsrMask: Fpsr.Ioc | Fpsr.Idc);
}
[Test, Pairwise] [Explicit]
public void F_Mul_Mulx_Se_D([ValueSource("_F_Mul_Mulx_Se_D_")] uint opcodes,
[ValueSource("_1D_F_")] ulong a,
[ValueSource("_1D_F_")] ulong b,
[Values(0u, 1u)] uint index)
{
uint h = index & 1;
opcodes |= h << 11;
ulong z = TestContext.CurrentContext.Random.NextULong();
V128 v0 = MakeVectorE1(z);
V128 v1 = MakeVectorE0(a);
V128 v2 = MakeVectorE0E1(b, b * h);
int rnd = (int)TestContext.CurrentContext.Random.NextUInt();
int fpcr = rnd & (1 << (int)Fpcr.Fz);
fpcr |= rnd & (1 << (int)Fpcr.Dn);
SingleOpcode(opcodes, v0: v0, v1: v1, v2: v2, fpcr: fpcr);
CompareAgainstUnicorn(fpsrMask: Fpsr.Ioc | Fpsr.Idc);
}
[Test, Pairwise] [Explicit]
public void F_Mul_Mulx_Ve_2S_4S([ValueSource("_F_Mul_Mulx_Ve_2S_4S_")] uint opcodes,
[Values(0u)] uint rd,
[Values(1u, 0u)] uint rn,
[Values(2u, 0u)] uint rm,
[ValueSource("_2S_F_")] ulong z,
[ValueSource("_2S_F_")] ulong a,
[ValueSource("_2S_F_")] ulong b,
[Values(0u, 1u, 2u, 3u)] uint index,
[Values(0b0u, 0b1u)] uint q) // <2S, 4S>
{
uint h = (index >> 1) & 1;
uint l = index & 1;
opcodes |= ((rm & 31) << 16) | ((rn & 31) << 5) | ((rd & 31) << 0);
opcodes |= (l << 21) | (h << 11);
opcodes |= ((q & 1) << 30);
V128 v0 = MakeVectorE0E1(z, z);
V128 v1 = MakeVectorE0E1(a, a * q);
V128 v2 = MakeVectorE0E1(b, b * h);
int rnd = (int)TestContext.CurrentContext.Random.NextUInt();
int fpcr = rnd & (1 << (int)Fpcr.Fz);
fpcr |= rnd & (1 << (int)Fpcr.Dn);
SingleOpcode(opcodes, v0: v0, v1: v1, v2: v2, fpcr: fpcr);
CompareAgainstUnicorn(fpsrMask: Fpsr.Ioc | Fpsr.Idc);
}
[Test, Pairwise] [Explicit]
public void F_Mul_Mulx_Ve_2D([ValueSource("_F_Mul_Mulx_Ve_2D_")] uint opcodes,
[Values(0u)] uint rd,
[Values(1u, 0u)] uint rn,
[Values(2u, 0u)] uint rm,
[ValueSource("_1D_F_")] ulong z,
[ValueSource("_1D_F_")] ulong a,
[ValueSource("_1D_F_")] ulong b,
[Values(0u, 1u)] uint index)
{
uint h = index & 1;
opcodes |= ((rm & 31) << 16) | ((rn & 31) << 5) | ((rd & 31) << 0);
opcodes |= h << 11;
V128 v0 = MakeVectorE0E1(z, z);
V128 v1 = MakeVectorE0E1(a, a);
V128 v2 = MakeVectorE0E1(b, b * h);
int rnd = (int)TestContext.CurrentContext.Random.NextUInt();
int fpcr = rnd & (1 << (int)Fpcr.Fz);
fpcr |= rnd & (1 << (int)Fpcr.Dn);
SingleOpcode(opcodes, v0: v0, v1: v1, v2: v2, fpcr: fpcr);
CompareAgainstUnicorn(fpsrMask: Fpsr.Ioc | Fpsr.Idc);
}
#endif
}
}