ryujinx/Ryujinx.HLE/HOS/Kernel/KScheduler.cs
gdkchan 00579927e4
Better process implementation (#491)
* Initial implementation of KProcess

* Some improvements to the memory manager, implement back guest stack trace printing

* Better GetInfo implementation, improve checking in some places with information from process capabilities

* Allow the cpu to read/write from the correct memory locations for accesses crossing a page boundary

* Change long -> ulong for address/size on memory related methods to avoid unnecessary casts

* Attempt at implementing ldr:ro with new KProcess

* Allow BSS with size 0 on ldr:ro

* Add checking for memory block slab heap usage, return errors if full, exit gracefully

* Use KMemoryBlockSize const from KMemoryManager

* Allow all methods to read from non-contiguous locations

* Fix for TransactParcelAuto

* Address PR feedback, additionally fix some small issues related to the KIP loader and implement SVCs GetProcessId, GetProcessList, GetSystemInfo, CreatePort and ManageNamedPort

* Fix wrong check for source pages count from page list on MapPhysicalMemory

* Fix some issues with UnloadNro on ldr:ro
2018-11-28 20:18:09 -02:00

233 lines
No EOL
7.7 KiB
C#

using System;
using System.Collections.Generic;
using System.Linq;
namespace Ryujinx.HLE.HOS.Kernel
{
partial class KScheduler : IDisposable
{
public const int PrioritiesCount = 64;
public const int CpuCoresCount = 4;
private const int PreemptionPriorityCores012 = 59;
private const int PreemptionPriorityCore3 = 63;
private Horizon System;
public KSchedulingData SchedulingData { get; private set; }
public KCoreContext[] CoreContexts { get; private set; }
public bool ThreadReselectionRequested { get; set; }
public KScheduler(Horizon System)
{
this.System = System;
SchedulingData = new KSchedulingData();
CoreManager = new HleCoreManager();
CoreContexts = new KCoreContext[CpuCoresCount];
for (int Core = 0; Core < CpuCoresCount; Core++)
{
CoreContexts[Core] = new KCoreContext(this, CoreManager);
}
}
private void PreemptThreads()
{
System.CriticalSection.Enter();
PreemptThread(PreemptionPriorityCores012, 0);
PreemptThread(PreemptionPriorityCores012, 1);
PreemptThread(PreemptionPriorityCores012, 2);
PreemptThread(PreemptionPriorityCore3, 3);
System.CriticalSection.Leave();
}
private void PreemptThread(int Prio, int Core)
{
IEnumerable<KThread> ScheduledThreads = SchedulingData.ScheduledThreads(Core);
KThread SelectedThread = ScheduledThreads.FirstOrDefault(x => x.DynamicPriority == Prio);
//Yield priority queue.
if (SelectedThread != null)
{
SchedulingData.Reschedule(Prio, Core, SelectedThread);
}
IEnumerable<KThread> SuitableCandidates()
{
foreach (KThread Thread in SchedulingData.SuggestedThreads(Core))
{
int SrcCore = Thread.CurrentCore;
if (SrcCore >= 0)
{
KThread HighestPrioSrcCore = SchedulingData.ScheduledThreads(SrcCore).FirstOrDefault();
if (HighestPrioSrcCore != null && HighestPrioSrcCore.DynamicPriority < 2)
{
break;
}
if (HighestPrioSrcCore == Thread)
{
continue;
}
}
//If the candidate was scheduled after the current thread, then it's not worth it.
if (SelectedThread == null || SelectedThread.LastScheduledTime >= Thread.LastScheduledTime)
{
yield return Thread;
}
}
}
//Select candidate threads that could run on this core.
//Only take into account threads that are not yet selected.
KThread Dst = SuitableCandidates().FirstOrDefault(x => x.DynamicPriority == Prio);
if (Dst != null)
{
SchedulingData.TransferToCore(Prio, Core, Dst);
SelectedThread = Dst;
}
//If the priority of the currently selected thread is lower than preemption priority,
//then allow threads with lower priorities to be selected aswell.
if (SelectedThread != null && SelectedThread.DynamicPriority > Prio)
{
Func<KThread, bool> Predicate = x => x.DynamicPriority >= SelectedThread.DynamicPriority;
Dst = SuitableCandidates().FirstOrDefault(Predicate);
if (Dst != null)
{
SchedulingData.TransferToCore(Dst.DynamicPriority, Core, Dst);
}
}
ThreadReselectionRequested = true;
}
public void SelectThreads()
{
ThreadReselectionRequested = false;
for (int Core = 0; Core < CpuCoresCount; Core++)
{
KThread Thread = SchedulingData.ScheduledThreads(Core).FirstOrDefault();
CoreContexts[Core].SelectThread(Thread);
}
for (int Core = 0; Core < CpuCoresCount; Core++)
{
//If the core is not idle (there's already a thread running on it),
//then we don't need to attempt load balancing.
if (SchedulingData.ScheduledThreads(Core).Any())
{
continue;
}
int[] SrcCoresHighestPrioThreads = new int[CpuCoresCount];
int SrcCoresHighestPrioThreadsCount = 0;
KThread Dst = null;
//Select candidate threads that could run on this core.
//Give preference to threads that are not yet selected.
foreach (KThread Thread in SchedulingData.SuggestedThreads(Core))
{
if (Thread.CurrentCore < 0 || Thread != CoreContexts[Thread.CurrentCore].SelectedThread)
{
Dst = Thread;
break;
}
SrcCoresHighestPrioThreads[SrcCoresHighestPrioThreadsCount++] = Thread.CurrentCore;
}
//Not yet selected candidate found.
if (Dst != null)
{
//Priorities < 2 are used for the kernel message dispatching
//threads, we should skip load balancing entirely.
if (Dst.DynamicPriority >= 2)
{
SchedulingData.TransferToCore(Dst.DynamicPriority, Core, Dst);
CoreContexts[Core].SelectThread(Dst);
}
continue;
}
//All candiates are already selected, choose the best one
//(the first one that doesn't make the source core idle if moved).
for (int Index = 0; Index < SrcCoresHighestPrioThreadsCount; Index++)
{
int SrcCore = SrcCoresHighestPrioThreads[Index];
KThread Src = SchedulingData.ScheduledThreads(SrcCore).ElementAtOrDefault(1);
if (Src != null)
{
//Run the second thread on the queue on the source core,
//move the first one to the current core.
KThread OrigSelectedCoreSrc = CoreContexts[SrcCore].SelectedThread;
CoreContexts[SrcCore].SelectThread(Src);
SchedulingData.TransferToCore(OrigSelectedCoreSrc.DynamicPriority, Core, OrigSelectedCoreSrc);
CoreContexts[Core].SelectThread(OrigSelectedCoreSrc);
}
}
}
}
public KThread GetCurrentThread()
{
lock (CoreContexts)
{
for (int Core = 0; Core < CpuCoresCount; Core++)
{
if (CoreContexts[Core].CurrentThread?.Context.IsCurrentThread() ?? false)
{
return CoreContexts[Core].CurrentThread;
}
}
}
throw new InvalidOperationException("Current thread is not scheduled!");
}
public KProcess GetCurrentProcess()
{
return GetCurrentThread().Owner;
}
public void Dispose()
{
Dispose(true);
}
protected virtual void Dispose(bool Disposing)
{
if (Disposing)
{
KeepPreempting = false;
}
}
}
}