ryujinx/Ryujinx.Graphics.Vulkan/PipelineBase.cs
gdkchan 88a0e720cb
Use RGBA16 vertex format if RGB16 is not supported on Vulkan (#3552)
* Use RGBA16 vertex format if RGB16 is not supported on Vulkan

* Catch all shader compilation exceptions
2022-08-20 16:20:27 -03:00

1223 lines
44 KiB
C#

using Ryujinx.Graphics.GAL;
using Ryujinx.Graphics.Shader;
using Silk.NET.Vulkan;
using System;
namespace Ryujinx.Graphics.Vulkan
{
class PipelineBase : IDisposable
{
public const int DescriptorSetLayouts = 4;
public const int UniformSetIndex = 0;
public const int StorageSetIndex = 1;
public const int TextureSetIndex = 2;
public const int ImageSetIndex = 3;
protected readonly VulkanRenderer Gd;
protected readonly Device Device;
public readonly PipelineCache PipelineCache;
private PipelineDynamicState _dynamicState;
private PipelineState _newState;
private bool _stateDirty;
private GAL.PrimitiveTopology _topology;
private ulong _currentPipelineHandle;
protected Auto<DisposablePipeline> Pipeline;
protected PipelineBindPoint Pbp;
protected CommandBufferScoped Cbs;
protected CommandBufferScoped? PreloadCbs;
protected CommandBuffer CommandBuffer;
public CommandBufferScoped CurrentCommandBuffer => Cbs;
private ShaderCollection _program;
private Vector4<float>[] _renderScale = new Vector4<float>[73];
private int _fragmentScaleCount;
protected FramebufferParams FramebufferParams;
private Auto<DisposableFramebuffer> _framebuffer;
private Auto<DisposableRenderPass> _renderPass;
private int _writtenAttachmentCount;
private bool _renderPassActive;
private readonly DescriptorSetUpdater _descriptorSetUpdater;
private BufferState _indexBuffer;
private readonly BufferState[] _transformFeedbackBuffers;
private readonly BufferState[] _vertexBuffers;
protected Rectangle<int> ClearScissor;
public SupportBufferUpdater SupportBufferUpdater;
private bool _needsIndexBufferRebind;
private bool _needsTransformFeedbackBuffersRebind;
private bool _needsVertexBuffersRebind;
private bool _tfEnabled;
private bool _tfActive;
public ulong DrawCount { get; private set; }
public unsafe PipelineBase(VulkanRenderer gd, Device device)
{
Gd = gd;
Device = device;
var pipelineCacheCreateInfo = new PipelineCacheCreateInfo()
{
SType = StructureType.PipelineCacheCreateInfo
};
gd.Api.CreatePipelineCache(device, pipelineCacheCreateInfo, null, out PipelineCache).ThrowOnError();
_descriptorSetUpdater = new DescriptorSetUpdater(gd, this);
_transformFeedbackBuffers = new BufferState[Constants.MaxTransformFeedbackBuffers];
_vertexBuffers = new BufferState[Constants.MaxVertexBuffers + 1];
const int EmptyVbSize = 16;
using var emptyVb = gd.BufferManager.Create(gd, EmptyVbSize);
emptyVb.SetData(0, new byte[EmptyVbSize]);
_vertexBuffers[0] = new BufferState(emptyVb.GetBuffer(), 0, EmptyVbSize, 0UL);
_needsVertexBuffersRebind = true;
ClearScissor = new Rectangle<int>(0, 0, 0xffff, 0xffff);
var defaultScale = new Vector4<float> { X = 1f, Y = 0f, Z = 0f, W = 0f };
new Span<Vector4<float>>(_renderScale).Fill(defaultScale);
_newState.Initialize();
_newState.LineWidth = 1f;
_newState.SamplesCount = 1;
}
public void Initialize()
{
SupportBufferUpdater = new SupportBufferUpdater(Gd);
SupportBufferUpdater.UpdateRenderScale(_renderScale, 0, SupportBuffer.RenderScaleMaxCount);
}
public unsafe void Barrier()
{
MemoryBarrier memoryBarrier = new MemoryBarrier()
{
SType = StructureType.MemoryBarrier,
SrcAccessMask = AccessFlags.AccessMemoryReadBit | AccessFlags.AccessMemoryWriteBit,
DstAccessMask = AccessFlags.AccessMemoryReadBit | AccessFlags.AccessMemoryWriteBit
};
Gd.Api.CmdPipelineBarrier(
CommandBuffer,
PipelineStageFlags.PipelineStageFragmentShaderBit,
PipelineStageFlags.PipelineStageFragmentShaderBit,
0,
1,
memoryBarrier,
0,
null,
0,
null);
}
public void BeginTransformFeedback(GAL.PrimitiveTopology topology)
{
_tfEnabled = true;
}
public void ClearBuffer(BufferHandle destination, int offset, int size, uint value)
{
EndRenderPass();
var dst = Gd.BufferManager.GetBuffer(CommandBuffer, destination, true).Get(Cbs, offset, size).Value;
BufferHolder.InsertBufferBarrier(
Gd,
Cbs.CommandBuffer,
dst,
BufferHolder.DefaultAccessFlags,
AccessFlags.AccessTransferWriteBit,
PipelineStageFlags.PipelineStageAllCommandsBit,
PipelineStageFlags.PipelineStageTransferBit,
offset,
size);
Gd.Api.CmdFillBuffer(CommandBuffer, dst, (ulong)offset, (ulong)size, value);
BufferHolder.InsertBufferBarrier(
Gd,
Cbs.CommandBuffer,
dst,
AccessFlags.AccessTransferWriteBit,
BufferHolder.DefaultAccessFlags,
PipelineStageFlags.PipelineStageTransferBit,
PipelineStageFlags.PipelineStageAllCommandsBit,
offset,
size);
}
public unsafe void ClearRenderTargetColor(int index, int layer, int layerCount, ColorF color)
{
if (FramebufferParams == null || !FramebufferParams.IsValidColorAttachment(index))
{
return;
}
if (_renderPass == null)
{
CreateRenderPass();
}
BeginRenderPass();
var clearValue = new ClearValue(new ClearColorValue(color.Red, color.Green, color.Blue, color.Alpha));
var attachment = new ClearAttachment(ImageAspectFlags.ImageAspectColorBit, (uint)index, clearValue);
var clearRect = FramebufferParams.GetClearRect(ClearScissor, layer, layerCount);
Gd.Api.CmdClearAttachments(CommandBuffer, 1, &attachment, 1, &clearRect);
}
public unsafe void ClearRenderTargetDepthStencil(int layer, int layerCount, float depthValue, bool depthMask, int stencilValue, int stencilMask)
{
// TODO: Use stencilMask (fully)
if (FramebufferParams == null || !FramebufferParams.HasDepthStencil)
{
return;
}
if (_renderPass == null)
{
CreateRenderPass();
}
BeginRenderPass();
var clearValue = new ClearValue(null, new ClearDepthStencilValue(depthValue, (uint)stencilValue));
var flags = depthMask ? ImageAspectFlags.ImageAspectDepthBit : 0;
if (stencilMask != 0)
{
flags |= ImageAspectFlags.ImageAspectStencilBit;
}
var attachment = new ClearAttachment(flags, 0, clearValue);
var clearRect = FramebufferParams.GetClearRect(ClearScissor, layer, layerCount);
Gd.Api.CmdClearAttachments(CommandBuffer, 1, &attachment, 1, &clearRect);
}
public void CommandBufferBarrier()
{
// TODO: More specific barrier?
Barrier();
}
public void CopyBuffer(BufferHandle source, BufferHandle destination, int srcOffset, int dstOffset, int size)
{
EndRenderPass();
var src = Gd.BufferManager.GetBuffer(CommandBuffer, source, false);
var dst = Gd.BufferManager.GetBuffer(CommandBuffer, destination, true);
BufferHolder.Copy(Gd, Cbs, src, dst, srcOffset, dstOffset, size);
}
public void DispatchCompute(int groupsX, int groupsY, int groupsZ)
{
if (!_program.IsLinked)
{
return;
}
EndRenderPass();
RecreatePipelineIfNeeded(PipelineBindPoint.Compute);
Gd.Api.CmdDispatch(CommandBuffer, (uint)groupsX, (uint)groupsY, (uint)groupsZ);
}
public void Draw(int vertexCount, int instanceCount, int firstVertex, int firstInstance)
{
if (!_program.IsLinked)
{
return;
}
RecreatePipelineIfNeeded(PipelineBindPoint.Graphics);
BeginRenderPass();
ResumeTransformFeedbackInternal();
DrawCount++;
if (_topology == GAL.PrimitiveTopology.Quads)
{
int quadsCount = vertexCount / 4;
for (int i = 0; i < quadsCount; i++)
{
Gd.Api.CmdDraw(CommandBuffer, 4, (uint)instanceCount, (uint)(firstVertex + i * 4), (uint)firstInstance);
}
}
else
{
Gd.Api.CmdDraw(CommandBuffer, (uint)vertexCount, (uint)instanceCount, (uint)firstVertex, (uint)firstInstance);
}
}
public void DrawIndexed(int indexCount, int instanceCount, int firstIndex, int firstVertex, int firstInstance)
{
if (!_program.IsLinked)
{
return;
}
RecreatePipelineIfNeeded(PipelineBindPoint.Graphics);
BeginRenderPass();
ResumeTransformFeedbackInternal();
DrawCount++;
if (_topology == GAL.PrimitiveTopology.Quads)
{
int quadsCount = indexCount / 4;
for (int i = 0; i < quadsCount; i++)
{
Gd.Api.CmdDrawIndexed(CommandBuffer, 4, (uint)instanceCount, (uint)(firstIndex + i * 4), firstVertex, (uint)firstInstance);
}
}
else
{
Gd.Api.CmdDrawIndexed(CommandBuffer, (uint)indexCount, (uint)instanceCount, (uint)firstIndex, firstVertex, (uint)firstInstance);
}
}
public void DrawTexture(ITexture texture, ISampler sampler, Extents2DF srcRegion, Extents2DF dstRegion)
{
if (texture is TextureView srcTexture)
{
SupportBufferUpdater.Commit();
var oldCullMode = _newState.CullMode;
var oldStencilTestEnable = _newState.StencilTestEnable;
var oldDepthTestEnable = _newState.DepthTestEnable;
var oldDepthWriteEnable = _newState.DepthWriteEnable;
var oldTopology = _newState.Topology;
var oldViewports = _dynamicState.Viewports;
var oldViewportsCount = _newState.ViewportsCount;
_newState.CullMode = CullModeFlags.CullModeNone;
_newState.StencilTestEnable = false;
_newState.DepthTestEnable = false;
_newState.DepthWriteEnable = false;
SignalStateChange();
Gd.HelperShader.DrawTexture(
Gd,
this,
srcTexture,
sampler,
srcRegion,
dstRegion);
_newState.CullMode = oldCullMode;
_newState.StencilTestEnable = oldStencilTestEnable;
_newState.DepthTestEnable = oldDepthTestEnable;
_newState.DepthWriteEnable = oldDepthWriteEnable;
_newState.Topology = oldTopology;
_dynamicState.Viewports = oldViewports;
_dynamicState.ViewportsCount = (int)oldViewportsCount;
_dynamicState.SetViewportsDirty();
_newState.ViewportsCount = oldViewportsCount;
SignalStateChange();
}
}
public void EndTransformFeedback()
{
PauseTransformFeedbackInternal();
_tfEnabled = false;
}
public void MultiDrawIndirectCount(BufferRange indirectBuffer, BufferRange parameterBuffer, int maxDrawCount, int stride)
{
if (!Gd.Capabilities.SupportsIndirectParameters)
{
throw new NotSupportedException();
}
if (_program.LinkStatus != ProgramLinkStatus.Success)
{
return;
}
RecreatePipelineIfNeeded(PipelineBindPoint.Graphics);
BeginRenderPass();
ResumeTransformFeedbackInternal();
DrawCount++;
var buffer = Gd.BufferManager.GetBuffer(CommandBuffer, indirectBuffer.Handle, true).Get(Cbs, indirectBuffer.Offset, indirectBuffer.Size).Value;
var countBuffer = Gd.BufferManager.GetBuffer(CommandBuffer, parameterBuffer.Handle, true).Get(Cbs, parameterBuffer.Offset, parameterBuffer.Size).Value;
Gd.DrawIndirectCountApi.CmdDrawIndirectCount(
CommandBuffer,
buffer,
(ulong)indirectBuffer.Offset,
countBuffer,
(ulong)parameterBuffer.Offset,
(uint)maxDrawCount,
(uint)stride);
}
public void MultiDrawIndexedIndirectCount(BufferRange indirectBuffer, BufferRange parameterBuffer, int maxDrawCount, int stride)
{
if (!Gd.Capabilities.SupportsIndirectParameters)
{
throw new NotSupportedException();
}
if (_program.LinkStatus != ProgramLinkStatus.Success)
{
return;
}
RecreatePipelineIfNeeded(PipelineBindPoint.Graphics);
BeginRenderPass();
ResumeTransformFeedbackInternal();
DrawCount++;
var buffer = Gd.BufferManager.GetBuffer(CommandBuffer, indirectBuffer.Handle, true).Get(Cbs, indirectBuffer.Offset, indirectBuffer.Size).Value;
var countBuffer = Gd.BufferManager.GetBuffer(CommandBuffer, parameterBuffer.Handle, true).Get(Cbs, parameterBuffer.Offset, parameterBuffer.Size).Value;
Gd.DrawIndirectCountApi.CmdDrawIndexedIndirectCount(
CommandBuffer,
buffer,
(ulong)indirectBuffer.Offset,
countBuffer,
(ulong)parameterBuffer.Offset,
(uint)maxDrawCount,
(uint)stride);
}
public void SetAlphaTest(bool enable, float reference, GAL.CompareOp op)
{
// This is currently handled using shader specialization, as Vulkan does not support alpha test.
// In the future, we may want to use this to write the reference value into the support buffer,
// to avoid creating one version of the shader per reference value used.
}
public void SetBlendState(int index, BlendDescriptor blend)
{
ref var vkBlend = ref _newState.Internal.ColorBlendAttachmentState[index];
vkBlend.BlendEnable = blend.Enable;
vkBlend.SrcColorBlendFactor = blend.ColorSrcFactor.Convert();
vkBlend.DstColorBlendFactor = blend.ColorDstFactor.Convert();
vkBlend.ColorBlendOp = blend.ColorOp.Convert();
vkBlend.SrcAlphaBlendFactor = blend.AlphaSrcFactor.Convert();
vkBlend.DstAlphaBlendFactor = blend.AlphaDstFactor.Convert();
vkBlend.AlphaBlendOp = blend.AlphaOp.Convert();
_newState.BlendConstantR = blend.BlendConstant.Red;
_newState.BlendConstantG = blend.BlendConstant.Green;
_newState.BlendConstantB = blend.BlendConstant.Blue;
_newState.BlendConstantA = blend.BlendConstant.Alpha;
SignalStateChange();
}
public void SetDepthBias(PolygonModeMask enables, float factor, float units, float clamp)
{
_dynamicState.SetDepthBias(factor, units, clamp);
_newState.DepthBiasEnable = enables != 0;
SignalStateChange();
}
public void SetDepthClamp(bool clamp)
{
_newState.DepthClampEnable = clamp;
SignalStateChange();
}
public void SetDepthMode(DepthMode mode)
{
// Currently this is emulated on the shader, because Vulkan had no support for changing the depth mode.
// In the future, we may want to use the VK_EXT_depth_clip_control extension to change it here.
}
public void SetDepthTest(DepthTestDescriptor depthTest)
{
_newState.DepthTestEnable = depthTest.TestEnable;
_newState.DepthWriteEnable = depthTest.WriteEnable;
_newState.DepthCompareOp = depthTest.Func.Convert();
SignalStateChange();
}
public void SetFaceCulling(bool enable, Face face)
{
_newState.CullMode = enable ? face.Convert() : CullModeFlags.CullModeNone;
SignalStateChange();
}
public void SetFrontFace(GAL.FrontFace frontFace)
{
_newState.FrontFace = frontFace.Convert();
SignalStateChange();
}
public void SetImage(int binding, ITexture image, GAL.Format imageFormat)
{
_descriptorSetUpdater.SetImage(binding, image, imageFormat);
}
public void SetIndexBuffer(BufferRange buffer, GAL.IndexType type)
{
_indexBuffer.Dispose();
if (buffer.Handle != BufferHandle.Null)
{
Auto<DisposableBuffer> ib = null;
int offset = buffer.Offset;
int size = buffer.Size;
if (type == GAL.IndexType.UByte && !Gd.Capabilities.SupportsIndexTypeUint8)
{
ib = Gd.BufferManager.GetBufferI8ToI16(Cbs, buffer.Handle, offset, size);
offset = 0;
size *= 2;
type = GAL.IndexType.UShort;
}
else
{
ib = Gd.BufferManager.GetBuffer(CommandBuffer, buffer.Handle, false);
}
_indexBuffer = new BufferState(ib, offset, size, type.Convert());
}
else
{
_indexBuffer = BufferState.Null;
}
_indexBuffer.BindIndexBuffer(Gd.Api, Cbs);
}
public void SetLineParameters(float width, bool smooth)
{
_newState.LineWidth = width;
SignalStateChange();
}
public void SetLogicOpState(bool enable, LogicalOp op)
{
_newState.LogicOpEnable = enable;
_newState.LogicOp = op.Convert();
SignalStateChange();
}
public void SetMultisampleState(MultisampleDescriptor multisample)
{
_newState.AlphaToCoverageEnable = multisample.AlphaToCoverageEnable;
_newState.AlphaToOneEnable = multisample.AlphaToOneEnable;
SignalStateChange();
}
public void SetOrigin(Origin origin)
{
// TODO.
}
public unsafe void SetPatchParameters(int vertices, ReadOnlySpan<float> defaultOuterLevel, ReadOnlySpan<float> defaultInnerLevel)
{
_newState.PatchControlPoints = (uint)vertices;
SignalStateChange();
// TODO: Default levels (likely needs emulation on shaders?)
}
public void SetPointParameters(float size, bool isProgramPointSize, bool enablePointSprite, Origin origin)
{
// TODO.
}
public void SetPolygonMode(GAL.PolygonMode frontMode, GAL.PolygonMode backMode)
{
// TODO.
}
public void SetPrimitiveRestart(bool enable, int index)
{
_newState.PrimitiveRestartEnable = enable;
// TODO: What to do about the index?
SignalStateChange();
}
public void SetPrimitiveTopology(GAL.PrimitiveTopology topology)
{
_topology = topology;
var vkTopology = topology.Convert();
_newState.Topology = vkTopology;
SignalStateChange();
}
public void SetProgram(IProgram program)
{
var internalProgram = (ShaderCollection)program;
var stages = internalProgram.GetInfos();
_program = internalProgram;
_descriptorSetUpdater.SetProgram(internalProgram);
_newState.PipelineLayout = internalProgram.PipelineLayout;
_newState.StagesCount = (uint)stages.Length;
stages.CopyTo(_newState.Stages.AsSpan().Slice(0, stages.Length));
SignalStateChange();
}
protected virtual void SignalAttachmentChange()
{
}
public void SetRasterizerDiscard(bool discard)
{
_newState.RasterizerDiscardEnable = discard;
SignalStateChange();
}
public void SetRenderTargetColorMasks(ReadOnlySpan<uint> componentMask)
{
int count = Math.Min(Constants.MaxRenderTargets, componentMask.Length);
int writtenAttachments = 0;
for (int i = 0; i < count; i++)
{
ref var vkBlend = ref _newState.Internal.ColorBlendAttachmentState[i];
vkBlend.ColorWriteMask = (ColorComponentFlags)componentMask[i];
if (componentMask[i] != 0)
{
writtenAttachments++;
}
}
SignalStateChange();
if (writtenAttachments != _writtenAttachmentCount)
{
SignalAttachmentChange();
_writtenAttachmentCount = writtenAttachments;
}
}
public void SetRenderTargets(ITexture[] colors, ITexture depthStencil)
{
FramebufferParams?.UpdateModifications();
CreateFramebuffer(colors, depthStencil);
CreateRenderPass();
SignalStateChange();
SignalAttachmentChange();
}
public void SetRenderTargetScale(float scale)
{
_renderScale[0].X = scale;
SupportBufferUpdater.UpdateRenderScale(_renderScale, 0, 1); // Just the first element.
}
public void SetScissors(ReadOnlySpan<Rectangle<int>> regions)
{
int maxScissors = Gd.Capabilities.SupportsMultiView ? Constants.MaxViewports : 1;
int count = Math.Min(maxScissors, regions.Length);
if (count > 0)
{
ClearScissor = regions[0];
}
for (int i = 0; i < count; i++)
{
var region = regions[i];
var offset = new Offset2D(region.X, region.Y);
var extent = new Extent2D((uint)region.Width, (uint)region.Height);
_dynamicState.SetScissor(i, new Rect2D(offset, extent));
}
_dynamicState.ScissorsCount = count;
_newState.ScissorsCount = (uint)count;
SignalStateChange();
}
public void SetStencilTest(StencilTestDescriptor stencilTest)
{
_dynamicState.SetStencilMasks(
(uint)stencilTest.BackFuncMask,
(uint)stencilTest.BackMask,
(uint)stencilTest.BackFuncRef,
(uint)stencilTest.FrontFuncMask,
(uint)stencilTest.FrontMask,
(uint)stencilTest.FrontFuncRef);
_newState.StencilTestEnable = stencilTest.TestEnable;
_newState.StencilBackFailOp = stencilTest.BackSFail.Convert();
_newState.StencilBackPassOp = stencilTest.BackDpPass.Convert();
_newState.StencilBackDepthFailOp = stencilTest.BackDpFail.Convert();
_newState.StencilBackCompareOp = stencilTest.BackFunc.Convert();
_newState.StencilFrontFailOp = stencilTest.FrontSFail.Convert();
_newState.StencilFrontPassOp = stencilTest.FrontDpPass.Convert();
_newState.StencilFrontDepthFailOp = stencilTest.FrontDpFail.Convert();
_newState.StencilFrontCompareOp = stencilTest.FrontFunc.Convert();
SignalStateChange();
}
public void SetStorageBuffers(int first, ReadOnlySpan<BufferRange> buffers)
{
_descriptorSetUpdater.SetStorageBuffers(CommandBuffer, first, buffers);
}
public void SetTextureAndSampler(ShaderStage stage, int binding, ITexture texture, ISampler sampler)
{
_descriptorSetUpdater.SetTextureAndSampler(Cbs, stage, binding, texture, sampler);
}
public void SetTransformFeedbackBuffers(ReadOnlySpan<BufferRange> buffers)
{
PauseTransformFeedbackInternal();
int count = Math.Min(Constants.MaxTransformFeedbackBuffers, buffers.Length);
for (int i = 0; i < count; i++)
{
var range = buffers[i];
_transformFeedbackBuffers[i].Dispose();
if (range.Handle != BufferHandle.Null)
{
_transformFeedbackBuffers[i] = new BufferState(Gd.BufferManager.GetBuffer(CommandBuffer, range.Handle, true), range.Offset, range.Size);
_transformFeedbackBuffers[i].BindTransformFeedbackBuffer(Gd, Cbs, (uint)i);
}
else
{
_transformFeedbackBuffers[i] = BufferState.Null;
}
}
}
public void SetUniformBuffers(int first, ReadOnlySpan<BufferRange> buffers)
{
_descriptorSetUpdater.SetUniformBuffers(CommandBuffer, first, buffers);
}
public void SetUserClipDistance(int index, bool enableClip)
{
// TODO.
}
public void SetVertexAttribs(ReadOnlySpan<VertexAttribDescriptor> vertexAttribs)
{
var formatCapabilities = Gd.FormatCapabilities;
int count = Math.Min(Constants.MaxVertexAttributes, vertexAttribs.Length);
for (int i = 0; i < count; i++)
{
var attribute = vertexAttribs[i];
var bufferIndex = attribute.IsZero ? 0 : attribute.BufferIndex + 1;
_newState.Internal.VertexAttributeDescriptions[i] = new VertexInputAttributeDescription(
(uint)i,
(uint)bufferIndex,
formatCapabilities.ConvertToVertexVkFormat(attribute.Format),
(uint)attribute.Offset);
}
_newState.VertexAttributeDescriptionsCount = (uint)count;
SignalStateChange();
}
public void SetVertexBuffers(ReadOnlySpan<VertexBufferDescriptor> vertexBuffers)
{
int count = Math.Min(Constants.MaxVertexBuffers, vertexBuffers.Length);
_newState.Internal.VertexBindingDescriptions[0] = new VertexInputBindingDescription(0, 0, VertexInputRate.Vertex);
int validCount = 1;
for (int i = 0; i < count; i++)
{
var vertexBuffer = vertexBuffers[i];
// TODO: Support divisor > 1
var inputRate = vertexBuffer.Divisor != 0 ? VertexInputRate.Instance : VertexInputRate.Vertex;
if (vertexBuffer.Buffer.Handle != BufferHandle.Null)
{
var vb = Gd.BufferManager.GetBuffer(CommandBuffer, vertexBuffer.Buffer.Handle, false);
if (vb != null)
{
int binding = i + 1;
int descriptorIndex = validCount++;
_newState.Internal.VertexBindingDescriptions[descriptorIndex] = new VertexInputBindingDescription(
(uint)binding,
(uint)vertexBuffer.Stride,
inputRate);
int vbSize = vertexBuffer.Buffer.Size;
if (Gd.Vendor == Vendor.Amd && vertexBuffer.Stride > 0)
{
// AMD has a bug where if offset + stride * count is greater than
// the size, then the last attribute will have the wrong value.
// As a workaround, simply use the full buffer size.
int remainder = vbSize % vertexBuffer.Stride;
if (remainder != 0)
{
vbSize += vertexBuffer.Stride - remainder;
}
}
_vertexBuffers[binding].Dispose();
_vertexBuffers[binding] = new BufferState(
vb,
vertexBuffer.Buffer.Offset,
vbSize,
(ulong)vertexBuffer.Stride);
_vertexBuffers[binding].BindVertexBuffer(Gd, Cbs, (uint)binding);
}
}
}
_newState.VertexBindingDescriptionsCount = (uint)validCount;
SignalStateChange();
}
public void SetViewports(ReadOnlySpan<GAL.Viewport> viewports, bool disableTransform)
{
int maxViewports = Gd.Capabilities.SupportsMultiView ? Constants.MaxViewports : 1;
int count = Math.Min(maxViewports, viewports.Length);
static float Clamp(float value)
{
return Math.Clamp(value, 0f, 1f);
}
for (int i = 0; i < count; i++)
{
var viewport = viewports[i];
_dynamicState.SetViewport(i, new Silk.NET.Vulkan.Viewport(
viewport.Region.X,
viewport.Region.Y,
viewport.Region.Width == 0f ? 1f : viewport.Region.Width,
viewport.Region.Height == 0f ? 1f : viewport.Region.Height,
Clamp(viewport.DepthNear),
Clamp(viewport.DepthFar)));
}
_dynamicState.ViewportsCount = count;
float disableTransformF = disableTransform ? 1.0f : 0.0f;
if (SupportBufferUpdater.Data.ViewportInverse.W != disableTransformF || disableTransform)
{
float scale = _renderScale[0].X;
SupportBufferUpdater.UpdateViewportInverse(new Vector4<float>
{
X = scale * 2f / viewports[0].Region.Width,
Y = scale * 2f / viewports[0].Region.Height,
Z = 1,
W = disableTransformF
});
}
_newState.ViewportsCount = (uint)count;
SignalStateChange();
}
public unsafe void TextureBarrier()
{
MemoryBarrier memoryBarrier = new MemoryBarrier()
{
SType = StructureType.MemoryBarrier,
SrcAccessMask = AccessFlags.AccessMemoryReadBit | AccessFlags.AccessMemoryWriteBit,
DstAccessMask = AccessFlags.AccessMemoryReadBit | AccessFlags.AccessMemoryWriteBit
};
Gd.Api.CmdPipelineBarrier(
CommandBuffer,
PipelineStageFlags.PipelineStageFragmentShaderBit,
PipelineStageFlags.PipelineStageFragmentShaderBit,
0,
1,
memoryBarrier,
0,
null,
0,
null);
}
public void TextureBarrierTiled()
{
TextureBarrier();
}
public void UpdateRenderScale(ReadOnlySpan<float> scales, int totalCount, int fragmentCount)
{
bool changed = false;
for (int index = 0; index < totalCount; index++)
{
if (_renderScale[1 + index].X != scales[index])
{
_renderScale[1 + index].X = scales[index];
changed = true;
}
}
// Only update fragment count if there are scales after it for the vertex stage.
if (fragmentCount != totalCount && fragmentCount != _fragmentScaleCount)
{
_fragmentScaleCount = fragmentCount;
SupportBufferUpdater.UpdateFragmentRenderScaleCount(_fragmentScaleCount);
}
if (changed)
{
SupportBufferUpdater.UpdateRenderScale(_renderScale, 0, 1 + totalCount);
}
}
protected void SignalCommandBufferChange()
{
_needsIndexBufferRebind = true;
_needsTransformFeedbackBuffersRebind = true;
_needsVertexBuffersRebind = true;
_descriptorSetUpdater.SignalCommandBufferChange();
_dynamicState.ForceAllDirty();
_currentPipelineHandle = 0;
}
private void CreateFramebuffer(ITexture[] colors, ITexture depthStencil)
{
FramebufferParams = new FramebufferParams(Device, colors, depthStencil);
UpdatePipelineAttachmentFormats();
_newState.SamplesCount = FramebufferParams.AttachmentSamples.Length != 0 ? FramebufferParams.AttachmentSamples[0] : 1;
}
protected void UpdatePipelineAttachmentFormats()
{
var dstAttachmentFormats = _newState.Internal.AttachmentFormats.AsSpan();
FramebufferParams.AttachmentFormats.CopyTo(dstAttachmentFormats);
int maxAttachmentIndex = FramebufferParams.MaxColorAttachmentIndex + (FramebufferParams.HasDepthStencil ? 1 : 0);
for (int i = FramebufferParams.AttachmentFormats.Length; i <= maxAttachmentIndex; i++)
{
dstAttachmentFormats[i] = 0;
}
_newState.ColorBlendAttachmentStateCount = (uint)(FramebufferParams.MaxColorAttachmentIndex + 1);
_newState.HasDepthStencil = FramebufferParams.HasDepthStencil;
}
protected unsafe void CreateRenderPass()
{
const int MaxAttachments = Constants.MaxRenderTargets + 1;
AttachmentDescription[] attachmentDescs = null;
var subpass = new SubpassDescription()
{
PipelineBindPoint = PipelineBindPoint.Graphics
};
AttachmentReference* attachmentReferences = stackalloc AttachmentReference[MaxAttachments];
var hasFramebuffer = FramebufferParams != null;
if (hasFramebuffer && FramebufferParams.AttachmentsCount != 0)
{
attachmentDescs = new AttachmentDescription[FramebufferParams.AttachmentsCount];
for (int i = 0; i < FramebufferParams.AttachmentsCount; i++)
{
int bindIndex = FramebufferParams.AttachmentIndices[i];
attachmentDescs[i] = new AttachmentDescription(
0,
FramebufferParams.AttachmentFormats[i],
TextureStorage.ConvertToSampleCountFlags(FramebufferParams.AttachmentSamples[i]),
AttachmentLoadOp.Load,
AttachmentStoreOp.Store,
AttachmentLoadOp.Load,
AttachmentStoreOp.Store,
ImageLayout.General,
ImageLayout.General);
}
int colorAttachmentsCount = FramebufferParams.ColorAttachmentsCount;
if (colorAttachmentsCount > MaxAttachments - 1)
{
colorAttachmentsCount = MaxAttachments - 1;
}
if (colorAttachmentsCount != 0)
{
int maxAttachmentIndex = FramebufferParams.MaxColorAttachmentIndex;
subpass.ColorAttachmentCount = (uint)maxAttachmentIndex + 1;
subpass.PColorAttachments = &attachmentReferences[0];
// Fill with VK_ATTACHMENT_UNUSED to cover any gaps.
for (int i = 0; i <= maxAttachmentIndex; i++)
{
subpass.PColorAttachments[i] = new AttachmentReference(Vk.AttachmentUnused, ImageLayout.Undefined);
}
for (int i = 0; i < colorAttachmentsCount; i++)
{
int bindIndex = FramebufferParams.AttachmentIndices[i];
subpass.PColorAttachments[bindIndex] = new AttachmentReference((uint)i, ImageLayout.General);
}
}
if (FramebufferParams.HasDepthStencil)
{
uint dsIndex = (uint)FramebufferParams.AttachmentsCount - 1;
subpass.PDepthStencilAttachment = &attachmentReferences[MaxAttachments - 1];
*subpass.PDepthStencilAttachment = new AttachmentReference(dsIndex, ImageLayout.General);
}
}
var subpassDependency = new SubpassDependency(
0,
0,
PipelineStageFlags.PipelineStageAllGraphicsBit,
PipelineStageFlags.PipelineStageAllGraphicsBit,
AccessFlags.AccessMemoryReadBit | AccessFlags.AccessMemoryWriteBit | AccessFlags.AccessColorAttachmentWriteBit,
AccessFlags.AccessMemoryReadBit | AccessFlags.AccessMemoryWriteBit | AccessFlags.AccessShaderReadBit,
0);
fixed (AttachmentDescription* pAttachmentDescs = attachmentDescs)
{
var renderPassCreateInfo = new RenderPassCreateInfo()
{
SType = StructureType.RenderPassCreateInfo,
PAttachments = pAttachmentDescs,
AttachmentCount = attachmentDescs != null ? (uint)attachmentDescs.Length : 0,
PSubpasses = &subpass,
SubpassCount = 1,
PDependencies = &subpassDependency,
DependencyCount = 1
};
Gd.Api.CreateRenderPass(Device, renderPassCreateInfo, null, out var renderPass).ThrowOnError();
_renderPass?.Dispose();
_renderPass = new Auto<DisposableRenderPass>(new DisposableRenderPass(Gd.Api, Device, renderPass));
}
EndRenderPass();
_framebuffer?.Dispose();
_framebuffer = hasFramebuffer ? FramebufferParams.Create(Gd.Api, Cbs, _renderPass) : null;
}
protected void SignalStateChange()
{
_stateDirty = true;
}
private void RecreatePipelineIfNeeded(PipelineBindPoint pbp)
{
_dynamicState.ReplayIfDirty(Gd.Api, CommandBuffer);
// Commit changes to the support buffer before drawing.
SupportBufferUpdater.Commit();
if (_stateDirty || Pbp != pbp)
{
CreatePipeline(pbp);
_stateDirty = false;
Pbp = pbp;
}
if (_needsIndexBufferRebind)
{
_indexBuffer.BindIndexBuffer(Gd.Api, Cbs);
_needsIndexBufferRebind = false;
}
if (_needsTransformFeedbackBuffersRebind)
{
PauseTransformFeedbackInternal();
for (int i = 0; i < Constants.MaxTransformFeedbackBuffers; i++)
{
_transformFeedbackBuffers[i].BindTransformFeedbackBuffer(Gd, Cbs, (uint)i);
}
_needsTransformFeedbackBuffersRebind = false;
}
if (_needsVertexBuffersRebind)
{
for (int i = 0; i < Constants.MaxVertexBuffers + 1; i++)
{
_vertexBuffers[i].BindVertexBuffer(Gd, Cbs, (uint)i);
}
_needsVertexBuffersRebind = false;
}
_descriptorSetUpdater.UpdateAndBindDescriptorSets(Cbs, pbp);
}
private void CreatePipeline(PipelineBindPoint pbp)
{
// We can only create a pipeline if the have the shader stages set.
if (_newState.Stages != null)
{
if (pbp == PipelineBindPoint.Graphics && _renderPass == null)
{
CreateRenderPass();
}
var pipeline = pbp == PipelineBindPoint.Compute
? _newState.CreateComputePipeline(Gd, Device, _program, PipelineCache)
: _newState.CreateGraphicsPipeline(Gd, Device, _program, PipelineCache, _renderPass.Get(Cbs).Value);
ulong pipelineHandle = pipeline.GetUnsafe().Value.Handle;
if (_currentPipelineHandle != pipelineHandle)
{
_currentPipelineHandle = pipelineHandle;
Pipeline = pipeline;
PauseTransformFeedbackInternal();
Gd.Api.CmdBindPipeline(CommandBuffer, pbp, Pipeline.Get(Cbs).Value);
}
}
}
private unsafe void BeginRenderPass()
{
if (!_renderPassActive)
{
var renderArea = new Rect2D(null, new Extent2D(FramebufferParams.Width, FramebufferParams.Height));
var clearValue = new ClearValue();
var renderPassBeginInfo = new RenderPassBeginInfo()
{
SType = StructureType.RenderPassBeginInfo,
RenderPass = _renderPass.Get(Cbs).Value,
Framebuffer = _framebuffer.Get(Cbs).Value,
RenderArea = renderArea,
PClearValues = &clearValue,
ClearValueCount = 1
};
Gd.Api.CmdBeginRenderPass(CommandBuffer, renderPassBeginInfo, SubpassContents.Inline);
_renderPassActive = true;
}
}
public void EndRenderPass()
{
if (_renderPassActive)
{
PauseTransformFeedbackInternal();
Gd.Api.CmdEndRenderPass(CommandBuffer);
SignalRenderPassEnd();
_renderPassActive = false;
}
}
protected virtual void SignalRenderPassEnd()
{
}
private void PauseTransformFeedbackInternal()
{
if (_tfEnabled && _tfActive)
{
EndTransformFeedbackInternal();
_tfActive = false;
}
}
private void ResumeTransformFeedbackInternal()
{
if (_tfEnabled && !_tfActive)
{
BeginTransformFeedbackInternal();
_tfActive = true;
}
}
private unsafe void BeginTransformFeedbackInternal()
{
Gd.TransformFeedbackApi.CmdBeginTransformFeedback(CommandBuffer, 0, 0, null, null);
}
private unsafe void EndTransformFeedbackInternal()
{
Gd.TransformFeedbackApi.CmdEndTransformFeedback(CommandBuffer, 0, 0, null, null);
}
protected virtual void Dispose(bool disposing)
{
if (disposing)
{
_renderPass?.Dispose();
_framebuffer?.Dispose();
_indexBuffer.Dispose();
_newState.Dispose();
_descriptorSetUpdater.Dispose();
for (int i = 0; i < _vertexBuffers.Length; i++)
{
_vertexBuffers[i].Dispose();
}
for (int i = 0; i < _transformFeedbackBuffers.Length; i++)
{
_transformFeedbackBuffers[i].Dispose();
}
Pipeline?.Dispose();
unsafe
{
Gd.Api.DestroyPipelineCache(Device, PipelineCache, null);
}
SupportBufferUpdater.Dispose();
}
}
public void Dispose()
{
Dispose(true);
}
}
}